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Abstract - In this study, Levenberg-Marquardt (L-M) algorithm with Multiple Input-Single Output 

(MISO) layer network was employed to predict the biomass Mass Yield using the carbon content 

(CC), torrefaction temperature (TFT), and torrefaction time (TT) as the input variables. Agro-waste 

biomass were the feedstocks considered. Around 150 datasets obtained from torrefaction experiments 

were trained using 8, 9, & 10 neurons in the hidden layer, respectively. The Input Variable 

Representation Technique- by-Visual Inspection Method (IVRT-VIM) was used for the model 

improvement. The coefficient of determination (R2), Mean Square Error (MSE) and Partial 

Derivatives (PaD) method, were the matrixes used for the evaluation of the model and the most 

influential variable on the output, respectively. The R2 obtained from TT, TFT, & CC, TT & TFT, and 

TFT & CC as inputs were in the range of 90 – 93.71 %, 88.61- 94.55%, & 90.40 – 97.14 %, 

respectively. From the sensitivity analysis, Carbon content (CC) was the most important variable 

affecting the Mass Yield (output) with Sum of Squares of Partial Derivatives (SSD) of 21.29. The 

results obtained have shown that ANN model is capable of predicting the mass yield of torrefied 

biomass. 

Keywords: Artificial Neural Network, Biomass, Mass Yield, Energy production, Torrefaction 

Plant. 

 

1. Introduction 

Researchers around the globe are relentlessly 

studying the most effective means of energy 

generation. The studies are centered on 

renewable and non-renewable energy sources. 

Solar, hydro, wind, and biomass are promising 

sources of renewables while oil and gas 

(petroleum) and coal are potential for non-

renewable sources. From the environmental 

point of few, renewable sources are more 

attractive than non-renewable sources (Hu et 

al., 2012). 

Gaseous emissions into the environment are 

dependent on the energy conversion process 

used. The thermochemical energy production 

processes such as combustion, gasification and 

pyrolysis are promising systems for energy 

production (Chen et., 2018). The emissions 

arising from the processes varies. Biomass - a 

renewable source produces lower emissions 

when compared to coal, oil and gas, but its 

energy density is lower than that of the 

aforementioned fossil fuels. The emissions 

from coal including CO2, NOX and SOX are 

dangerous to the environment (Chen et., 2018). 

Biomass are organic materials obtained from 

living plants and biological wastes. They are 

clean source of fuel with low or zero amounts 

of Sulphur and contaminants (Hu et al., 2012). 

It is composed of cellulose, hemicelluse, lignin 

and extractives. The hemicellulose is the most 

reactive amongst the components of the fuel 

(Chen et., 2018). Similarly, Non-renewable 

fuels such as coal and petroleum are fast 

depleting, expensive, and produces dangerous 

emissions resulting to climate change (Paula et 

al., 2013). 

In Nigeria, waste biomass materials including 

wheat straw, rice husk, corn cob, sugarcane 

bagasse, and wood sawdust are in abundant. 

They can be used to produce syngas used as fuel 

in gas turbines, fuel cells, and internal 

combustion engines to produce electricity. The 
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quality of the syngas is dependent on the 

quality of the fuel. The quality of a fuel can be 

enhanced by torrefaction. 

Torrefaction is a heat-treatment process 

whereby biomass is heated in an inert 

atmosphere using tubular or rotary furnace at 

suitable temperature and time to upgrade the 

fuel quality (Chen et al., 2017). The carbon 

content is one of the vital physiochemical 

properties of biomass that affects the energy 

value the fuel. The energy density of biomass 

is lower than that of coal, oil and gas, but 

emissions from these fossils limits there uses. 

To achieve a high-quality biomass fuel via 

torrefaction, the process conditions have to be 

understood. The Mass Yield or Mass Loss of 

torrefied biomass is a critical parameter in 

biomass torrefaction plant. Campbell et al. 

(2018) has reported the co-relation of thermal 

degradation of the biomass and carbon content 

of the fuel with respect to the mass yield using 

experimental and linear regression model. 

Unfortunately, Laboratory experiments are not 

attractive due to time and high cost of 

experiments. In this study, Artificial Neural 

Network (ANN) model will be used to predict 

the mass yield of biomass. 

ANN has been used in vision and speech 

recognition (Pandey et al., 2016). It is a data-

driven technique that explores the complex 

relationships for different input and output 

variables without requiring the explanation of 

the mathematical phenomena or principles 

involved (Sunphorka et al., 2017). Also, it has 

been used due to its predictive accuracies and 

enhanced adaptability in energy science 

(Buratti et al., 2014). The ANN model has been 

used for estimating the gasification 

performance of gasification systems (Pandey et 

al., (2016); Ozonoh et al., (2020); and Ozonoh 

et al., (2020). Other researchers including Bach 

et al. (2017) and Nieto et al. (2018) reported the 

attractiveness of the model in predicting the 

lower heating value (LHV) of biomass during 

gasification reactions. Similarly, Tiwary et al., 

(2018) and George et al., (2018) employed the 

model to study the syngas yield, LHV of 

product gas, LHV of gasification products 

(e.g., char and tar) and gas composition (CO, 

CO2, CH4, H2) during gasification experiments 

in a fluidized bed gasifier (FBG) and bubbling 

fluidized bed (BFB) gasifier, respectively. 

The results from the aforementioned authors 

were promising, but unfortunately the 

prediction of mass yield of torrefied biomass 

samples using ANN model was not considered. 

A Multiple Input- Single-Output (MISO) layer 

network for predicting biomass Mass Yield is 

scarce in the literature. In this study, 150 

different experimental dataset was used with 

carbon content (CC), torrefaction temperature 

(TFT) and torrefaction time (TT) as the input 

variables to predict the Mass Yield (MY) 

- the output variable of the torrefied biomass. 

This study will promote the development of 

commercial biomass torrefaction plants, hence, 

resulting to energy production and 

sustainability. The study will also be 

instrumental to waste management in the 

country. It will equally assist stakeholders in 

decision making and as well, open a window 

for further R&D in this area. 

2. Theory of Work 

Electricity tariff and bills has continued to 

increase in Nigeria. It could be attributed to 

inefficient petroleum refineries in the country 

and over dependency in fossil fuels for electric 

power generation. Energy can be generated 

from both renewable and non-renewable 

sources as earlier explained in section 1. To 

enhance domestic and industrial operations in 

Nigeria, sustainable electricity sources and 

systems are crucial. 

2.1. Biomass Torrefaction 

Torrefaction of biomass upgrades the energy 

density of the fuel. The pre-treatment process 

creates an opportunity of substituting biomass 

with fossil fuels such as coal and petroleum that 

threatens the environment during energy 

conversion processes (Ozonoh et al., 2020). 

Biomass materials have important components 

as shown in Figure 1, but understanding the 

relationship between its 

composition and torrefaction process 

conditions may require several experiments. To 

save time and the cost of experiments, 

processing modelling is considered. ANN 

process modelling is effective for this purpose. 
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Figure 1: Cell plant wall of lignocellulosic 

and its components (Chen et al., 2018). 

2.2. Physiochemical properties of Biomass 

An overview of the physiochemical properties 

of raw and torrefied biomass materials are 

presented in Table 1. 

Table 1: Characteristics of biomass before 

and after Torrefied biomass 
S/N Raw biomass Torrefied biomass 

1 Higher moisture content Lower moisture content 

2 Lower energy density Higher energy density 

3 Lower heating value Higher heating value 

4 Higher O/C and H/C ratio Lower O/C and H/C ratio 

5 Hygroscopic Hydrophobic 

6 Non-uniform properties More uniform properties 

7 Difficult to grind Easier to grind 

Torrefaction condition in the range of 200 - 

300 OC under nitrogen atmosphere 

Mathematically, the mass yield during 

torrefaction is expressed in Equation (1): 

𝑀𝑎𝑠𝑠 𝑌𝑖𝑒𝑙𝑑 =  
𝑀𝑎𝑠𝑠 𝑜𝑓 𝐵𝑖𝑜𝑐ℎ𝑎𝑟

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑅𝑎𝑤 𝐹𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘
 𝑋 100    (1) 

The mass Yield is in percentages (%) while 

the mass of biochar and Mass of raw feedstock 

are in gram (g). 

2.3. Artificial Neural Network (ANN) 

concept 

Understanding the basic structure is the first 

step in designing of the network, and it involves 

determining the number neurons and hidden 

layer in the input and output. According to 

Idioa et al., (2016), the input-output 

relationship of the ANN model is presented in 

Equation (2): 

𝑦 =  𝒃𝟐 +  𝐿𝑊 ∗ 𝑡𝑎𝑛𝑠𝑖𝑔 (𝑏1 + 𝐼𝑊 ∗ 𝑋)    (2) 

where y and X represents the input and output 

vectors respectively; LW represents the 

connection matrix of weights with respect to all 

the arcs from the hidden layer; IW represents 

the connection matrix from the input layer to 

the hidden layer; b1 and b2 are respectively, 

the hidden and output layers’ bias vectors. 

Signals are received by the hidden layer and 

sent to the neuron of the output layer, but each 

unit (yj) of the network in the hidden layer, 

sums its weighted inputs and uses the activation 

function to generate the output signal. Equation 

(3) (Idoia et al., 2016) presents the activation 

function principles of the network. 

𝑦𝑗 = 𝑓𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 (∑ 𝑊𝐼𝐽𝐼=1 𝑋𝑖 + 𝑏𝑗) (3) 

Wij represents the weight of the connection 

between the ith input and the jth neuron of the 

hidden layer; bj represents the bias weight of the 

unit j. An example of activation function that 

can be used is shown in Equation (4), while its 

application is shown in Equation (5). 

𝑓𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑋) =
1

1+𝑒−𝑋  (4) 

𝜇𝐾 = 𝑓𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 (∑𝑉𝑗𝑘

𝑗=1

𝑦𝑓 + 𝑏𝑘) (5)    

The statistical tools (R2 and MSE) used for the 

overall model performance are expressed in 

Equation 

(6) and Equation (7), respectively, and in this 

study, 8, 9 and 10 number of neurons in the 

hidden layer were considered, respectively.  

𝑅2

= 

[
 
 
 

 ∑ ((𝐸𝑖 − 𝐸)(𝑃𝑖 − 𝑃)𝑛
𝑖=1

√∑ (𝐸𝑖 − 𝐸)2𝑛
𝑖=1  √∑ (𝑃𝑖 − 𝑃)2𝑛

𝑗=1 ]
 
 
 
2

(6)    

𝑀𝑆𝐸 =
1

𝑛
∑(𝐸𝑖 − 𝑃1)

2

𝑛

𝑖=1

(7) 

3. Materials and Method 

3.1. Experimental data 

In this study, 150 torrefied biomass samples 

were collected from the literature and were 

used for the estimation of the output variable 

(Ozonoh et al., 2020). The results of the 

torrefaction experiments were carried out in 

different torrefaction reactors and process 

conditions. The parameters considered were 

torrefaction temperature (TT), torrefaction time 

(TFT), biomass carbon content (CC), and 

biomass mass yield (MY). The data were 

divided into input and output variables as 

displayed in Table 2 in section 4.1. 

3.2. Network Training Procedure 
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The 150 input-output patterns employed in the 

investigation was divided into three namely: 80 

% (120 dataset), 10 % (15 dataset), and 10 % 

(15 dataset) for training validation and testing 

the model, respectively.   Iterations were 

carried out using the input datasets that was 

randomized by the network. For effective 

training of the network and development of a 

better architecture, the number of neurons in the 

hidden layer was varied using tansigmoid 

transfer function expressed in Equation (2). A 

Multiple-Input-Single-Output (MISO) layer 

network was studied. For the model 

performance evaluation, an in-built statistical 

tool including the Mean Square Error (MSE) 

and coefficient of determination (R2) were 

used. As the network training progressed, the 

result of the model was assessed based on the 

network with the lowest MSE and highest R2 

values, respectively. 

A flow-chart presented in Figure 2 was used for 

the neural network training using 8, 9, and 10 

number of neurons in the hidden layer 

following the steps shown in Figure 2. 

 
Figure 2: ANN training procedure 

The Feed-forward neural network used in this 

study is shown in Figure 3. 

 
Figure 3: A feed forward ANN: With 3 

inputs and 1 output (MISO) layer. 

3. Sensitivity Analysis 

A sensitivity analysis was carried out to 

determine the input variable with the highest 

effect on the output variable (Mass Yield - 

MY). In this study, partial derivative (PaD) 

method was used and the expression presented 

in Equation (8) and Equation (9) was 

employed. 

𝑆𝑆𝐷𝐼 = ∑(
𝜕𝑜𝑘

𝑃

𝜕𝑥𝑖
𝑃)

2

𝑃

 (8) 

The effect or contribution of each input 

variable on the output variable is shown in 

Equation (8): 

Contribution of the ith Variable

=     
SSDi

∑ SSDii
  (9) 

Where, SSD represents the sum of square of 

the partial derivatives 

4. Results and Discussion 

4.1. Neural network model development 

and applications 

The range of the input and output data 

employed is displayed in Table 2. The 20 – 98 

data range is the range of data for the Mass Yield (the 

output variable) estimated in this study, while the 

200 – 800, 10 – 100, and 23 – 80 were the range of 

data or values for the torrefaction temperature, 

torrefaction time, and carbon content of the 

different experiments carried out by different 

researchers and extracted in the literature 

(Ozonoh et al., 2020) for the current study. 

 

Table 2: Input and output variables used in the neural network 
S/N Input Variable Data range Output variable Data range 

1 Torrefaction temperature [oC] 200 – 800 Mass yield (%) 20 - 98 

2 Torrefaction time [min] 10 – 100 - - 

3 Carbon content [%] 23 – 80 - - 
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4.2. ANN Mass Yield (MY) Prediction 

To determine the mass yield, different number 

of neurons in the hidden layer of the MISO 

layer network was used, while the Mean Square 

Error and the coefficient of determination (R2) 

were used to evaluate the prediction accuracy 

of the model. The values of MSE and R2 

determine are used to assess the accuracy of the 

model (Dahunsi, 2019). 

4.2.1. Prediction of mass yield using TT, 

TFT, & CC 

The TT, TFT, and CC were used to predict the 

mass yield. In this case, 8, 9, and 10 number of 

neurons in the hidden layer were studied. The 

convergence characteristics of the network 

obtained are shown in Figure 4 – Figure 6. 

 
Figure 4: Convergence characteristics of 

MISO layer network using TT, TFT, & CC: 

[8 neurons] 

 
Figure 5: Convergence characteristics of 

MISO layer network using TT, TFT, & CC: 

[9 neurons] 

 
Figure 6: Convergence characteristics of 

MISO layer network using TT, TFT, & CC: 

[10 neurons] 

From Figure 4 it can be seen that there was a 

perfect fitting in terms of the training, testing, 

and validation of the network, but the testing 

curve slightly shifted from that of training and 

validation at epoch 2, but the best fittings were 

achieved at epoch 3. The shift observed may be 

attributed to noise from the network. From 

Figure 5 and Figure 6, the convergence 

characteristics were very stable till epochs 8 

and 3 respectively, but the stability obtained 

from figure 7 was better than that of Figure 6. 

The MSE obtained from using 8, 9, and 10 

number of neurons were 28.53, 237.98, and 

167.37, while the R2 for training, validation and 

testing is in the range of 90.24 – 93.71 %, 

respectively. 

4.2.2. Prediction of mass yield using TT and 

TFT 

Based on the high MSE obtained in section 

4.2.1, the number of input variables used for the 

mass yield estimation was reduced from 3 to 2 

to test the model improvement. In this study, 

Input Variable Representation Technique-by-

Visual Inspection Method (IVRT-VIM) was 

employed (Ozonoh et al., 2020). The result 

obtained is presented in Figure 7 through 

Figure 9. From Figure 7, the number of 

iterations encountered by the network during 

the learning was 11, while the best fitting was 

achieved at epoch 5. The implication was that 

the model was able to respond accurately with 

the input dataset as evidenced in the 

convergence curves for fitting, validation and 
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testing, respectively. 

 
Figure 7: Convergence characteristics of 

MISO layer network using TT and TFT: [8 

neurons] 

 
Figure 8: Convergence characteristics of 

MISO layer network using TT and TFT: [9 

neurons] 

From Figure 8 and Figure 9, it can be observed 

that 8 and 12 number of iterations was used by 

the neural network to predict the mass yield, 

but the best fittings were obtained at epochs 2 

and 6, respectively. Larger value of epoch is 

preferred because it defines the stability of the 

characteristics curve; therefore, the model 

result obtained in Figure 9 is better than that of 

Figure 8. Furthermore, the accuracy of the 

result is evidenced in the MSE obtained from 

the networks, and from figures 4, 5, and 6, the 

MSE were 0.75, 0.62, and 0.50 respectively, 

while the R2 was in the range of 88.61 – 

94.55 %. A MSE tending to zero (0) is better 

(Cheng et al., 2018), it can be seen that the R2 

slightly reduced to 88.61 % when compared to 

when TT, TFT, and CC were used in the 

prediction, but there was considerable 

reduction in the MSE from TT & TFT input set. 

However, efforts were made to balance the two-

evaluation metrics (i.e., MSE and R2) to 

enhance the model results. 

 
Figure 9: Convergence characteristics of 

MISO layer network using TT and TFT: [10 

neurons] 

4.2.3. Prediction of mass yield using TFT 

and CC 

The IVRT-VIM was equally used here but, in 

this case, the torrefaction time (TT) was 

replaced with carbon content (CC). The 

essence of which was to determine if the CC 

has much influence on the mass yield than the 

TT, and check if the substitution of TT with 

CC, could help in the improvement of the 

model result. Figure 10 through Figure 12 

presents the result obtained when only TFT and 

CC were used for the evaluation. The 

convergence characteristics for the training 

carried out with the two input variables 

displayed some considerable stability. The 

values or number of epochs produced from 8, 9, 

and 10 number of neurons were 7, 3, and 6 

respectively, while considerable reductions in 

the MSE were equally recorded. The MSE from 

this training (TT and CC) was lower than that 

of TT, TFT, and CC and TT, TFT respectively. 

The indication was that the individual data 

contained in the overall experimental dataset 

from TT and CC were better than the others. 

 
Figure 10: Convergence characteristics of 

MISO layer network using TT and CC: [8 

neurons] 
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Figure 11: Convergence characteristics of 

MISO layer network using TT and CC: [9 

neurons] 

 

 
Figure 12: Convergence characteristics of 

MISO layer network using TT and CC: [9 

neurons] 

The summary result of the three classes of 

training carried out in this study to predict the 

mass yield of torrefied biomass materials is 

shown in Table 3. 

 

Table 3: Summary result: Prediction of mass yield using L-M MISO layer network 

Input Neurons MSE Epoch Training Validation Testing Out put 

L-M Algorithm MISO Layer Network: 2-Inputs & 1-Output 

TT, TFT 

and CC 

10 281.53 3 93.71 92.48 90.53 Mass 

Yield [%] 9 237.98 8 90.24 91.53 91.14 

 8 167.37 3 92.11 90.57 92.35  

L-M MISO Layer Network: 2-Inputs & 1-Output 

TT and TFT 10 0.50 5 94.55 93.75 90.66 Mass Yield 

[%] 9 0.62 2 90.38 91.50 89.46 

 8 0.75 6 91.14 89.22 88.61  

L-M MISO Layer Network: 2-Inputs & 1-Output 

TT and CC 10 0.04 7 97.14 96.28 94.45 Mass Yield 

[%]  9 0.05 3 94.07 93.56 94.16 

 8 0.06 6 92.21 91.25 90.40  

 

L-M: Levenberg Marquardt; MISO: Multiple 

Input-Single Output; TT: Torrefaction 

Temperature, TFT: Torrefaction Time; CC: 

Carbon Content. 

4.4. Sensitivity analysis 

Partial Derivative (PaD) method was used to 

determine the effect of the input variable on the 

output. The Pareto chart depicted in Figure 13 

to Figure 15 describes the effects of the inputs 

on the output. The sensitivity analysis was 

based on the result obtained from the model 

improvement through IVRT-VIM method. The 

charts displayed the variable with the highest 

value of the Sum of Squares of the Partial 

derivatives (SSD), and which affirmed the most 

influential variable on the mass yield. 

 

 
Figure 13: Effect of time, temperature and 

carbon content on mass yield: [SSD = 20.06] 
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Figure 14: Effect of time and temperature 

on mass yield: [SSD = 20.26] 

 

 
Figure 15: Effect of temperature and 

carbon content on mass yield: [SSD = 

21.29] 

From Figure 13 – Figure 15, the highest SSD 

was obtained when torrefaction temperature 

(TFT) and carbon content (CC) were used in the 

prediction of the mass yield; in this case, carbon 

(%) has the highest effect on the mass yield. 

This was expected because carbon content plays 

a very critical role in the energy content of a 

fuel and the mass loss of solid fuels during 

thermal degradation. Carbon is one of the major 

compositions of biomass (Fisher et al., 2018). 

The amount of carbon in a fuel also determines 

the calorific value (CV) of the fuel, and the 

change in the CV or higher 

heating value (HHV) of a fuel expressed by the 

enhancement factor (EF) equally influence the 

biomass Mass Yield (MY) during torrefaction 

(Ozonoh et al., 2018). 

5. Conclusion 

In this study, a Multiple-Input-Single-output 

(MISO) layer network was used to predict the 

mass yield of torrefied biomass. 150 

experimental dataset obtained from different 

biomass torrefaction and process conditions 

were employed. Torrefaction temperature 

(TT), torrefaction time (TFT), carbon content 

(CC) of biomass, were used as the input 

variables to determine the output (mass yield). 

Three classes of ANN training using 8, 9, and 

10 number of neurons in the hidden layer were 

considered, and the following conclusions were 

made: 

• 8 number of neurons in the hidden layer 

produced the best model result. 

• The R2 from TT, TFT, & CC, TT & 

TFT, and TFT & CC were in the range 

of 90 % – 93.71 

%, 88.61- 94.55 %, & 90.40 – 97.14 % 

respectively. 

• The MSE obtained from TT, TFT, & 

CC training was high, but the MSE 

obtained from both TT & TFT and TFT 

& CC was considerably low, while the 

least MSE of about 0.04 was obtained 

from TFT & CC variable for mass yield 

prediction. 

• The use of IVRT-VIM was effective for 

improvement of the ANN model result. 

• Carbon content was the most important 

variable that influenced the mass yield 

(output) with Sum of Squares of Partial 

Derivatives (SSD) of 21.9. 
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