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Abstract - Most mechanical systems subject to friction are often difficult to analyse due to the non-

linear nature of friction. One of the main effects of friction is the exhibition of limit cycle 

oscillations. Limit cycles are usually described as self-sustained oscillations of fixed amplitude and 

period resulting from system non-linearity. There has been some techniques used for predicting the 

existence of limit cycles in non-linear systems most of which are based on implementation of simple 

PID based position control and complex analysis. In this paper a simplified analytic approach for 

limit cycles prediction of a system subject to friction using describing functions technique is 

presented. The friction non-linearity is represented by a novel dynamic friction model with hysteretic 

features. The result of the describing function analysis method when compared to that of the PID 

controller showed strong similarity while implementation of the PID entails much design and 

resources thereby making it more expensive compared to the describing function method. The result 

also demonstrated the ability of the novel friction model to predict important non-linear friction 

features such as hysteresis with non-local memory and limit cycle oscillations. 

Keywords: Pre-sliding gross-slide regimes, Frictionmodel, Non-linearity, Hysteresis with non-

local memory, Describingfunctions method. 

 

I. Introduction 

Contacting mechanical systems experiencing a 

relativemotion are usually influenced by 

friction (Marton & Lantos, 2007), (Piatkowski, 

2014).This friction feature is a nonlinear 

phenomenon and could be said to be the 

tangential force between two surfaces in 

contactwhen there is a relative motion between 

them (Márton, Fodor, & Sepehri, 2011). 

Generally, nonlinear systems such as 

saturation, relay and friction do not obey the 

principles of superposition and homogeneity 

unlike the linear systems(Nnaji, 2012). Hence 

the tools of analysis and control used for 

linearsystems are largely not effective for the 

analysis of nonlinearsystems. Nonlinear 

systems are usually characterized by someof 

these features; 

 Possible existence of multiple 

equilibria 

 Static gain variations in the stable non-

linear systems due to different 

operating points. 

 Exhibition of chaotic behavior 

 Exhibition of Limit Cycle Oscillations 

(LCO), with fixed period and 

amplitude. 

The friction non-linearity is often characterized 

by different features depending on the friction 

regime. The friction regimes are two, namely 

the gross sliding and pre-sliding(Buechner, et 

al, 2012), (Hsieh & Pan, 2000). In the pre-slide 

regime the friction is a function of the 

displacement between the contacting bodies. 

At this point there exists no relative motion 

between the surfaces in contact. In the other 

hand, in the gross-sliding regime, friction is a 

function of the relative velocity between the 

surfaces in contact. Here, there is relative 
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motion between the bodies. Some of the more 

pronounced features of friction are; hysteresis 

with non-local memory(Dhaouadi & Ghorbel, 

2008), frictional lag(Hess & Soom, 1990), 

stribeck effect (Stribeck, 1902), stick-slip 

motion(Lin, Yau, & Tian, 2013), chaos and 

non-drift property(Berger, 2002). As a result of 

these features, friction has adverse effect in 

most mechanical contacting systems with 

relative motion. Such effects like the limit 

cycle oscillation usually lead to position and 

velocity tracking and regulation errors(Johnson 

& Lorenz, 1991),(Peng et al., 2005), (Rizos & 

Fassois, 2009). Limit cycles are described as 

self-sustained oscillations of constant 

amplitude and period which could be stable or 

unstable. They are usually independent of the 

size of the initial conditions and are less 

sensitive to variations in the parameters of the 

systems. 

In the field of control, modelling friction has 

been challenging due to its non-linear nature 

and its behavior strongly tied to the regime of 

friction. Many models of friction have been 

proposed for friction simulation and control. 

These models range from the simple static 

models such as the Coulomb friction model to 

the complex dynamic models such as the 

LuGre (Canudas de Wit, Olsson, Astrom, & 

Lischinsky, 1995), GMS(Lampaert, Al-Bender, 

& Swevers, 2003) and the novel dynamic 

friction(Nnaji, 2017) models. The static models 

are simple in implement however they are not 

able to capture friction dynamics such as 

frictional lag, hysteresis etc.,while the dynamic 

models capture friction dynamics to different 

degrees depending on the structure of the 

dynamic model. The ability of the LuGre to 

predict limit cycle oscillations is demonstrated 

in (Olsson, 1996). There is however no 

research known to the authors demonstrating 

the ability of the novel friction model for the 

prediction of limit cycles. Limit cycles 

prediction has often been accomplished 

through the use of accurate friction model 

deployed in a PID position control scheme or 

method of analysis using the describing 

functions approach or the phase plain method. 

In this paper both the analytical and PID 

position control methods were used to 

demonstrate the ability of the novel friction 

model to predict limit cycles and the results of 

both methods compared. The importance of 

limit cycle oscillations prediction is so as to be 

able to design appropriate control schemes for 

the mitigation of its effects in systems subject 

to friction. 

The outline of the paper is as follows; section 

II explains theconcept of describing functions 

analysis and the novel friction model. Section 

III, limit cycle predictionusing the describing 

function analysis technique is demonstrated.In 

section IV a PID control example using the 

novel friction model is illustrated.Analysis and 

discussion of the results are made in section 

V.Section VI concludes the paper. 

II. Describing Functions Concept 

Nonlinear systems such as friction usually 

exhibit limitcycle oscillations. In this section 

the concept of describingfunctions analysis 

method is formulated for the prediction of limit 

cycles in systems with friction. The friction 

phenomenon in a system often exposessuch 

system to the negative effect, especially in the 

pre-slideregime. Since a closed form analytical 

solution of nonlinear differential equation is 

not easily obtained, an approximateapproach is 

usually sought as an alternative. One such 

methodis the describing function analysis. In 

this technique, a linear approximation of the 

nonlinearity is obtained using theextended 

frequency response technique. This 

approximation captures closely the nonlinearity 

and could therefore be used to predict the 

behavior of the nonlinear system. 

A certainnonlinear system is shown in figure1 

in which it is possible to separate both the 

nonlinear and linear parts of the system. If the 

linear part couldbe replaced by a low pass filter 

and the nonlinearity as a quasi-linearelement as 

in figure 1b, then the describing functions 

approach could be used for the analysis of such 

a system. 
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Fig. 1. Describing function analysis approach to non-linear systems; (a) Feedback loop of a system 

with hard non-linearity represented as f(.), (b) A Describing Function equivalent scheme. 

 

The friction non-linearity can so be separated 

and thus the use of this method feasible. The 

outputof the nonlinear block represented as the 

functionf(.) and that of the describing 

function’sequivalent N(A, 𝜔) can be 

approximately the same. For sustained 

oscillations and output fedback to the 

autonomoussystem, the output of the nonlinear 

block, assumed to beperiodic can be 

represented using a Fourier series. Usingthe 

output of the nonlinear block as input to the 

linear low-pass filter block ensures that only 

the fundamental frequencycomponent remains. 

Therefore, the Fourier series can be used to 

represent the output of the nonlinear block to a 

good degree ofaccuracy. So for the figure, if 

the input signal e(t) is given as 

e(t) = Asinωt   (1) 

and the output of the non-linear block is 

𝑢 𝑡 =
𝑎0

2
+    𝑎𝑛  𝐶𝑜𝑠 𝑛𝜔𝑡 +∞

𝑛=1

𝑏𝑛 𝑆𝑖𝑛 𝑛𝜔𝑡  (2) 

with 

𝑎𝑛 =
2

𝑇
 (𝑢 𝑡  𝐶𝑜𝑠 𝑛𝜔𝑡  𝑑𝜔𝑡)
𝑇

0

 

𝑏𝑛 =
2

𝑇
 (𝑢 𝑡  𝑆𝑖𝑛 𝑛𝜔𝑡  𝑑𝜔𝑡)
𝑇

0

 

𝜔is the angular velocity, and n the nth term of 

the series.Assuming that the function is 

independent of frequency term𝜔 then the 

output is given as, (treating 𝜔 as a constant). 

From 

figure 1a 

𝑢 𝑡 =  𝑎1𝐶𝑜𝑠 𝜔𝑡 + 𝑏𝑛  𝑆𝑖𝑛(𝜔𝑡)       (3) 
The output of the linear block LB will be 

𝑦 𝑡 = 𝐺 𝑠 𝑢(𝑡)  (4) 

In terms of describing functions the output of 

the non-linear block NLBto any input e(t) is 

given as 

𝑢 𝑡 = 𝑁 𝐴,𝜔  𝑒(𝑡)  (5) 

where𝑁(𝐴,𝜔) is the describing function term. 

The objective however, is to obtain the output 

of the non-linear block to asinusoidal input of 

the form (equation 1) to be of the form 

(equation 2). Given that n = 1 i.e. the 

fundamental term of the series 

then for n = 1,  

𝑢 𝑡 =  𝑎1𝐶𝑜𝑠 𝜔𝑡 + 𝑏𝑛  𝑆𝑖𝑛(𝜔𝑡) 
which can also be expressed in terms of its 

magnitude and phase angle as 

𝑢 𝑡 =  𝑀 𝑆𝑖𝑛(𝜔𝑡 + 𝜃) 

where the magnitude is 𝑀(𝐴,𝜔) =

 𝑎1
2 +  𝑏1

2
 

and the phase angle is  𝜃 𝐴,𝜔 = arctan(
𝑎1

𝑏1
) 

Then using complex number notation 

𝑢 𝑡 = (𝑏1 +  𝑗𝑎1)𝑒𝑗 (𝜔𝑡+ 𝜃)  (6) 

In terms of gain, the non-linear block NLB 

represented as 𝑁 𝐴,𝜔  is the ratio of 

thefundamental output of the non-linear block 

𝑢(𝑡)and the inputsignal𝑒(𝑡), we obtain 

𝑁 𝐴,𝜔 =  
𝑢(𝑡)

𝑒(𝑡)
=

𝑎1𝐶𝑜𝑠 𝜔𝑡  + 𝑏𝑛  𝑆𝑖𝑛(𝜔𝑡 )

𝐴 𝑆𝑖𝑛  (𝜔𝑡 )
      (7) 

Expressing this in complex notation yields 

𝑁 𝐴,𝜔 =  
(𝑏1+ 𝑗𝑎1)𝑒 𝑗(𝜔𝑡 + 𝜃 )

𝐴 𝑒 𝑗𝜔𝑡
=  

𝑏1+ 𝑗𝑎1

𝐴
      (8) 

From the above we have been able to deduce 

the describing functions gain 

equivalent𝑁 𝐴,𝜔 , 
Figure 1bof a non-linear block of the type f(.) 

of figure 1a, for a sinusoidal input signal e(t). 

For the particular case where the non-linearity 

is represented as the friction phenomenon 
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modelled using the novel dynamic friction 

model described shortly, research has shown 

that the hysteretic friction behavior is not 

frequency dependent, so that the general 

describing function 𝑁 𝐴,𝜔  can further be 

reduced to 𝑁 𝐴  for the particular case of 

friction hysteresis. The closed loop transfer 

function of the equivalent non-linear system of 

figure 1b is given in the Laplace transform as 

𝑇 𝑠 =  
𝑌(𝑠)

𝐸(𝑠)
=  

𝐺 𝑠 𝑁(𝐴)

1+𝐺 𝑠 𝑁(𝐴)
  (9) 

wheres is the Laplacian variable. 

In frequency domain terms the characteristic 

equation (i.e. the denominator of equation 9) is  

1 + 𝐺 𝑗𝜔 𝑁 𝐴 = 0 
Leading to 

𝐺 𝑗𝜔 =
−1

𝑁(𝐴)
  (10) 

Equation 10 above is thus used for the 

prediction of the existenceand stability or 

otherwise of limit cycles in the given system. 

The general approach for the prediction of 

limit cycles is as follows; 

First obtain the Nyquist plot of the system 

transfer function 𝐺 𝑗𝜔 . Second is to plot the 

line graph of the reciprocal of the describing 

function term 𝑁(𝐴) on the Nyquist plot earlier 

obtained. If there is a point of intersection of 

the Nyquist and the reciprocal of the describing 

function gain then there exists a limit cycle 

oscillation. However, if the two plots do not 

meet at any point does not necessarily mean 

that there are no limit cycles. It simply implies 

that the describing functions method is not able 

to predict limit cycle existence for such system. 

This procedure will be further explained and 

implemented for the particular case of friction 

non-linearity in the subsequent sections 

following. 

III. Describing Functions Method for Limit 

Cycle Prediction 

One of the main applications of the describing 

functions analysis techniqueis in the prediction 

of the existence oflimit cycles in nonlinear 

systems and the nature of such limit cycles if 

they exist(Slotine & Li, 1991). Such non-linear 

systems could be a system with friction 

phenomena such as described in thispaper. Due 

to the sustained oscillating nature of these 

limitcycles, they can thus be represented by 

sinusoidal signals. In predicting the existence 

of limit cycles in friction systemsthe interest is 

usually in the pre-slide regime since it is the 

region with pronounced non-linearity. The 

friction force in thisregime is dependent only 

on the displacement and not therelative 

velocity of the moving surfaces. 

The hysteresis friction force function with non-

local memory characteristics presented 

in(Nnaji, 2017) is used for the limit cycle 

prediction performed in this paper. This 

hysteresis friction modelis multi-valued and as 

such its describing function will beexpressed 

as a complex function of the amplitude only 

sincethe friction hysteresis function is rate (𝜔) 

independent. Thepre-slide friction hysteresis 

function is given as 

𝐹𝑓(𝑧) = 𝑆𝑖𝑛  
𝑧− 𝑧𝑟

|𝑧𝑡− 𝑧𝑟 |

𝜋

2
  𝐹𝑡 −  𝐹𝑟  +  𝐹𝑟     (11) 

where 𝐹𝑓(𝑧) is the total friction force in the 

pre-slideregime at any given time, z the bristle 

displacement𝑧𝑟  the bristle displacement at the 

beginning of a branch, 𝑧𝑡 is the target 

displacement (which is a function of the 

reversaldisplacement 𝑧𝑟and the breakaway 

displacement𝑍𝑏 ),𝐹𝑟  is the friction force at 

thebeginning of a branch (takes into account 

the stressed stateof the bristles), 𝐹𝑡  target 

friction force (a function of thereversal point 

force 𝐹𝑟  and the stiction force). This hysteretic 

friction model has been demonstrated to 

exhibit known features of friction both in the 

pre-slide and gross-slide regimes such as 

hysteresis with non-local memory, non-drift 

property etc. 

The equation11 above is a function of the 

bristle deflection witha monotonically 

increasing characteristics. Other non-

linearelements such as the hyperbolic tangent 

and some cumulative distribution functions 

with similar features as the sine functionused 

here could also be used. However the sine 

function wasused due to the ease of integrating 

relevant parameters of interest and attaining 

saturation in finite time as would bereal 

friction. The first term of equation 11 capturing 

thefrictional force for any branch and the 
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second term the frictionforce value prior to 

external force application. Thus the secondterm 

is a description of the current state of the 

bristle before the external force influence. For 

simplicity 

 𝐹𝑡 −  𝐹𝑟  = 2𝐹𝑠 
and 

|𝑧𝑡 −  𝑧𝑟 | = 2𝑍𝑏  

with𝐹𝑠 and 𝑍𝑏  being respectively the stiction 

force and thebreakaway displacement and 

other terms being as previously defined. Using 

the simplification above equation 11 becomes 

𝐹𝑓 𝑧 = 2𝐹𝑠  𝑆𝑖𝑛  
𝑧− 𝑧𝑟

2𝑍𝑏

𝜋

2
 + 𝐹𝑟  (12) 

This friction model of equation 12 above is 

therefore used to replace the non-linear 

function f(.) of figure 1a. 

But the input signal 𝑒(𝑡) is a displacement 

signal such that  

𝑧 𝑡 = 𝑒(𝑡) 
Therefore 

𝐹𝑓 𝑧 = 2𝐹𝑠  𝑆𝑖𝑛  
𝑒− 𝑧𝑟

2𝑍𝑏

𝜋

2
 +  𝐹𝑟  (13) 

Given a sinusoidal input signal 

𝑒 𝑡 = 𝐴 𝑆𝑖𝑛 (𝜔𝑡) 
to the non-linear function of equation 13, the 

friction is 

𝐹𝑓 𝑧 = 2𝐹𝑠  𝑆𝑖𝑛  
𝐴 𝑆𝑖𝑛  (𝜔𝑡 )− 𝑧𝑟

2𝑍𝑏

𝜋

2
 +  𝐹𝑟      (14) 

where 𝑧𝑟 =  ±𝐴, and 𝐹𝑟  the values of 𝐹𝑓 𝑧  at 

±𝐴(this is the reversal point at which the 

displacement changes direction), A being the 

amplitude of the input signal. 

Thus 

𝐹𝑟 =  𝐹𝑠𝑆𝑖𝑛  
±𝐴 

𝑍𝑏

𝜋

2
    (15) 

and equation 14 becomes 

𝐹𝑓 𝑧 = 2𝐹𝑠  𝑆𝑖𝑛  
𝐴 𝑆𝑖𝑛  (𝜔𝑡 )−(±𝐴)

2𝑍𝑏

𝜋

2
 +

 𝐹𝑠𝑆𝑖𝑛  
±𝐴 

𝑍𝑏

𝜋

2
   (16) 

From equation 16, it is clear that the nature of 

the output friction signal 𝐹𝑓 𝑧  is dependent on 

the nature of the amplitude of the input signal 

′𝐴′ over a complete cycle in relation to the 

breakaway displacement𝑍𝑏 . The 2 distinct 

scenarios emerge depending on if the input 

signal’s amplitude is greater than the 

breakaway displacement parameter of the 

friction model. 

Scenario 1) when the amplitude of the input 

signal𝑒 𝑡 is greater than the breakaway 

displacement 

𝑍𝑏 . That is |𝐴|  > |𝑍𝑏 | 
2) When the input signal 𝑒 𝑡 is less than or 

equal to the breakaway displacement𝑍𝑏 . 

Generally, over a complete period of 

displacement the friction force as given by the 

novel model due to the input displacement 

signal 𝑒 𝑡  is obtained from equation 17. 

𝐹𝑓 𝑒 =  

𝐹𝑠                               𝑖𝑓 𝑒 > 𝑍𝑏
𝐹𝑓 𝑒       𝑖𝑓 − 𝑍𝑏  ≤ 𝑒 ≤  𝑍𝑏
−𝐹𝑠                            𝑖𝑓 𝑒 < −𝑍𝑏

   (17) 

Instance 1: When  𝐴 > |𝑍𝑏 | 
Recall the input signal equation 1 to be 

𝑒 𝑡 = 𝐴 𝑆𝑖𝑛 (𝜔𝑡) 

Defining an angle ∅𝑇  such that 

𝐴 𝑆𝑖𝑛  ∅𝑇 =  𝑍𝑏  
So that 

∅𝑇 =  𝑆𝑖𝑛−1
𝑍𝑏
𝐴

 

By symmetry, the two halves of the period are 

same and by describing function analysis 

method, the output friction signal is obtained 

as 

𝑢 𝑡 = 𝐹𝑓 𝑒 = 𝑎1𝐶𝑜𝑠 𝜔𝑡 + 𝑏𝑛  𝑆𝑖𝑛(𝜔𝑡) 

The input being a displacement signal and the 

output a friction signal. The input and output 

relationship for this scenario is shown in figure 

2. 

This thus simplifies to 

𝑎1 =  
2

𝑇
 𝑢 𝜏  𝐶𝑜𝑠  𝜔𝜏  𝑑𝜏
𝑇

0
   (18) 

with 𝑢 𝜏  replaced by 𝐹𝑓 𝑒  as represented in 

equation 17for a complete period. 

Taking advantage of the symmetry overthe two 

halves of the period and simplifying gives 

𝑎1 =  
4𝐹𝑠

𝐴𝜋

 

 
 
 
 
 

 1 −  
𝑍𝑏

2

𝐴2  −  

 32𝑍𝑏𝑆𝑖𝑛  

 

 
 
𝐴𝜋  1− 

𝑍𝑏
2

𝐴2

4𝑍𝑏

 

 
 

𝐴𝜋

 

 
 
 
 
 

   (19) 
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Fig. 2. Hysteresis friction for the condition that the signal input amplitude A is greater than the 

breakaway displacement Zb; top-left; friction hysteresis, bottom-left; signal input and top-right; 

friction hysteresis and the signal input against time 

 

In the same token 

𝑏1 =  
2

𝑇
 𝑢 𝜏  𝑆𝑖𝑛  𝜔𝜏  𝑑𝜏
𝑇

0
   (20) 

Thus, 

𝑏1 =  
4𝐹𝑠𝑍𝑏

𝐴𝜋
   (21) 

The describing function for the instance 

analyzed above is therefore given as 

𝑁(𝐴) =  
𝑏1+ 𝑗𝑎1

𝐴
  (22) 

Substituting the right values obtained earlier 

yields the describing function to be 
𝑁 𝐴 =

 
4𝐹𝑠𝑍𝑏

𝐴2𝜋
+  𝑗

4𝐹𝑠

𝐴2𝜋

 

 
 
 
 
 

 1 −  
𝑍𝑏

2

𝐴2  −  

 32𝑍𝑏𝑆𝑖𝑛  

 

 
 
𝐴𝜋  1− 

𝑍𝑏
2

𝐴2

4𝑍𝑏

 

 
 

𝐴𝜋

 

 
 
 
 
 

(23) 

As expected the describing function equation 

23 is a complex variablewhich is independent 

of the frequency of oscillation, and 

inagreement with the experimentally 

established fact that hysteretic functions with 

memoryusually have a complex describing 

function.Having derived the describing 

function equivalent for the friction non-

linearity represented in the block of figure 1a, 

the next step is to use same to predict the 

existence or otherwise of limit cycles. To 

achieve this, one seeks to determine if there is 

an intersection of the plot of the line graph of 

the reciprocal of the describing function and 

the Nyquist plot of the transfer function 𝐺(𝑗𝜔). 

The reciprocal of the describing function of 

equation 23 is then obtained as 
−1

𝑁(𝐴)
=  

𝛼+ 𝑗𝛽𝑋

𝛼2+(𝛽𝑋 )2  (24) 

where 

𝛼 =  
4𝐹𝑠𝑍𝑏
𝐴2𝜋

 

𝛽 =  
4𝐹𝑠
𝐴2𝜋

 

and 

𝑋 =  

 

 
 
 
 
 
 
 

 1 −  
𝑍𝑏

2

𝐴2
 −  

 32𝑍𝑏𝑆𝑖𝑛 

 

 
 𝐴𝜋 1− 

𝑍𝑏
2

𝐴2

4𝑍𝑏

 

 
 

𝐴𝜋

 

 
 
 
 
 
 
 

 

The intersection of 
−1

𝑁(𝐴)
as ‘A’ varies fromzero 

towards infinity and the Nyquist curve of 

𝐺(𝑗𝜔) asthe frequency changes from zero, if 

there is, establishes that the limit cycle 

oscillations existence,as well as the amplitude 
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and frequency of the limit cycle in 

approximateterms. 

Instance 2: When  𝐴 ≤ |𝑍𝑏 | 
For the situation where the amplitude ‘A’ of 

the input signal𝑒 𝑡 = 𝐴 𝑆𝑖𝑛 (𝜔𝑡)is less than 

the breakaway displacement𝑍𝑏 , this implies 

that the entire system motion dynamics 

iscontained in the pre-slide regime of friction 

and saturationnever occurs. This shows that for 

the entire cycle the signal isbounded between 

the positive and negative breakaway (±𝑍𝑏). 

This is captured in the friction equation 17 and 

the analysis is similar to that of scenario 1 

except it never saturates (i.e. stiction 𝐹𝑠 is 

never attained). As a result scenario 2 need not 

further study. The input and output relationship 

for this instance is shown in figure 3. 

 

 
Fig. 3. Hysteresis friction for the condition that the signal input amplitude A is less than the 

breakaway displacement Zb; top-left; friction hysteresis, bottom-left; signal input and top-right; 

friction hysteresis and the signal input against time. 

 

Using describing functions analysis method 

and parameter values as presented in the next 

section for the prediction of limit cycle 

oscillations in mechanical systems with friction 

is shown in figure 4. That is intersection of the 

plot of the line graph of the reciprocal of the 

describing function (equation 24) and the 

Nyquist plot of the transfer function 𝐺(𝑗𝜔). 

 
Fig. 4. Limit cycle oscillation prediction using 

the describing functionapproach showing the 

intersection of the Nyquist plot 𝐺(𝑗𝜔)  and the 
−1

𝑁(𝐴)
 plot 
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III. Limit Cycle Prediction Using PID 

Position Controller 

In the previous section we demonstrated the 

possibility of using describingfunctions 

analysis method for limit cycle prediction of 

system friction using the new hysteresis 

frictionmodel. In this section we consider an 

application example of the prediction of 

limitcycle oscillations by a system subject to 

friction on application of aPID controller.  

Consider a certain system with the 

followingmotion equation; 

𝑚𝑥 +  𝐹𝑓 𝑥 = 𝑢  (25) 

where m is the mass, x the displacement, 𝐹𝑓 𝑥  

the systemfriction and u the control law. 

Applying a PID position controllerwith a 

control law u given as 

𝑢 =  𝐾𝑣𝑥 +  𝐾𝑝𝑥 +  𝐾𝑖  (𝑥 𝜏 − 𝑥𝑟𝑒𝑓 (𝜏)
𝑡

0
) 𝑑𝜏 

  (26) 

Where 𝐾𝑣 is the derivative gain, 𝐾𝑝 the 

proportional gain and 𝐾𝑖  integral gain of the 

controller while 𝑥𝑟𝑒𝑓  is the referenceinput to 

the system.  

The closed loop control performance of the 

system was observed with a reference input 

𝑥𝑟𝑒𝑓  of 1m and a unit mass. For the case of a 

frictionless system, the control performance 

was good. However, the presence of friction 

quickly deteriorated the system performance 

and limit cycle oscillations are observed as 

shown in figure 5. 

 
Fig. 5. Limit cycle oscillation prediction using 

a simulation approach 

For 𝐾𝑝  = 3, 𝐾𝑣 = 6, 𝐾𝑖  = 4, and m = 1, usingthe 

friction model [16] as the friction force 

𝐹𝑓 𝑥 present inthe system, the result of 

position control using the linearcontroller u 

above yields a position signal that 

oscillatesaround the reference position. 

Parameter values of the model used for the 

simulation are 𝑍𝑏 = 0.001, 𝐹𝑠 = 1, 𝐹𝑐 = 0.6, 

𝑣𝑠 = 0.01,𝜎 = 100,  𝜏 = 0.002. 

The predicted amplitude using the describing 

functions method is A = 0.0787, and the limit 

cycle frequency of oscillation 𝜔 =
2.35 𝑟𝑎𝑑/𝑠𝑒𝑐, see figure 4while the amplitude 

A from the simulation is A = 0.0930 andthe 

corresponding frequency𝜔 = 0.3927 𝑟𝑎𝑑/𝑠𝑒𝑐, 

see figure5. By this the capability of the 

proposed new friction modelto predict limit 

cycle oscillations is demonstrated. Fromfigure 

4, it is observed that the predicted limit cycle is 

stablegiven that as A the amplitude increases, 

the value of 
−1

𝑁(𝐴)
increases further away from 

the portion encircled by the𝐺(𝑗𝜔)curve in the 

figure. The variations in the values of the 

predicted and actual values of the limit cycle 

oscillations isattributable to the fact that the 

describing functions method isan 

approximation technique and shows the effect 

of limiting the output only to the first 

(fundamental) harmonics. 

IV. Presentation And Discussion of 

Results 

From the graphs of figures 2 and 3, it is clearly 

demonstrated that the friction model presented 

is able to model true friction in the pre-slide 

regime. This hysteresis in the pre-slide is with 

non-local memory in that it does not forget its 

past history. The difference between the two 

results lies in the fact that in figure 2 the 

applied pre-slide displacement applied to the 

system with friction was larger than the 

breakaway displacement value and thus more 

than the stiction force. Beyond the breakaway 

displacement the input signal drives the system 

into gross-slide regime. At reversal points the 

friction force is seen to reverse thus tracing a 

hysteresis loop as shown in figure 2.This 

implies that beyond the breakaway 

displacement the friction force is not hysteretic 

in relation to the displacement while it is 

hysteretic in the region where the displacement 

is lower than the breakaway value.  



Nnaji A.C. et al: Predicting Limit Cycles in Systems With Friction Using Describing Function Analysis Technique 

www.explorematicsjournal.org.ng Page 17 
 

In figure 3, the displacement value is always 

lower than the breakaway value and thus 

stiction is never reached. However at reversals 

the friction hysteresis changes direction and 

remembers the path it had traced previously. 

This is an important friction of friction and the 

LuGre model does not capture this true friction 

behaviour in the pre-slide regime. This model 

is therefore demonstrated to capture this 

feature of friction. 

The describing functions analysis method 

result for prediction of limit cycle oscillations 

in mechanical systems with friction is shown in 

figure 4. In the figure the plot of the reciprocal 

of the describing function for the friction 

system and that of the Nyquist plot of the 

system function are seen to intersect each other 

thereby indicating the presence of limit cycle 

oscillations in the system. From the figure 4, 

the amplitude of the oscillations is obtained as 

0.0787 and the oscillation frequency 𝜔 =
0.35 rad/sec. Figure 4 further shows that the 

limit cycle oscillations so predicted is stable. 

This is so since as the amplitude is increased 

from zero, the value 
−1

𝑁(𝐴)
 increases further 

away from the portion encircled by the Nyquist 

plot. 

On the other hand the implemented PID based 

position control of systems with friction shown 

in figure 5 indicated the presence of limit 

cycles also. The amplitude of the limit cycles 

being 0.0930 and the corresponding frequency 

of 0.3927 rad/sec. 

The output results of both approaches showed 

the presence of limit cycle oscillations in such 

systems with friction non-linearity, with 

constant amplitude and period. Both results of 

figures 4 and 5 indicate that the oscillation 

never comes to rest, so long as there is no 

external influence. The observed variations in 

the values of the amplitude and frequency of 

oscillations predicted by the describing 

functions method and the PID position control 

simulation in most attributed to the fact that the 

describing functions method is an approximate 

approach and shows the effect of limiting the 

output only to the fundamental harmonics. Due 

to the possibility of the system exhibiting limit 

cycles, the PID control method is rarely used 

alone for position control of system subject to 

friction non-linearity. 

Despite its ability to predict limit cycles 

oscillations in friction systems represented by 

the novel friction model, the describing 

functions method has some limitations such as; 

 Its operation is based on the assumption 

of a single non-linear element in the 

system. This implies that even if there 

is more than one non-linear element in 

the system, the most pronounced non-

linearity is considered neglecting the 

rest. Where possible in systems with 

more than one non-linearity, lumping 

them into a single non-linear element is 

adopted. 

 The system non-linearity is assumed 

odd. This ensures symmetric 

characteristics between the input-output 

relationships of the non-linear block 

about the origin. 

 The system is unforced and time 

invariant, meaning there are no external 

inputs to the system and system 

parameters do not vary with time 

during operations. 

 The linear part of the system provides 

sufficient low-pass filtering features 

such that only the fundamental Fourier 

series based output for the given 

sinusoidal input to the non-linear block 

is taken into account. This is also 

termed as the filtering hypothesis, since 

the filter-like linear blockwill ensure 

that higher order components are 

eliminated. 

It is on account of these shortcomings that this 

method may sometimes yield inaccurate 

results. 

V. Conclusion 

The concept of describing functions analysis 

method for the prediction of limit cycles in 

systems with friction is presented. The 

approach uses the fundamental portion of the 

Fourier series to approximate the output of the 

non-linear system. A brief description of the 

novel dynamic friction model used to model 
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friction hysteresis was also presented. The 

friction model was shown to be able to predict 

pre-slide friction hysteresis with non-local 

memory unlike the more popular LuGre model. 

Limit cycle oscillations prediction using the 

describing functions method was demonstrated 

and the results obtained compared with that of 

a PID based position control of a friction 

system. Both results showed the predicted limit 

cycles to be stable. The results showed that the 

variations in the values of the amplitude and 

frequency for both methods are quite close. 

The difference in the amplitude and frequency 

between the two approached is due to the 

describing functions method being an 

approximate method. 
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