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ABSTRACT 
In this work, the double finite Fourier sine integral transform method has been used to solve the 

buckling problem of thin rectangular plates with simply supported edges. The double finite Fourier 

sine integral transformation was applied to the governing partial differential equation of plates under 

in-plane compressive loads to reduce the problem to an algebraic eigenvalue – eigenvector problem, 

for the two cases of uniaxial compressive loading and biaxial compressive loading considered. The 

requirement for non trivial solutions was used to obtain the characteristic buckling equations for the 

two cases. The buckling equations were solved to obtain the critical buckling loads for uniaxial 

buckling and biaxial buckling. It was found that the expressions obtained were exactly identical with 

those given in literature sources which used Navier’s methods and energy minimization methods. 

 

Keywords: Elastic buckling, finite Fourier sine integral transform method, thin plate, uniaxial 
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1. INTRODUCTION 
 Plates are extensively applied in many 

engineering structures such as aircraft wings, 

spacecraft panels, ship hulls and decks, building 

floor and roof, slabs, and offshore platform 

structures. Most plate structures, though capable 

of carrying tensile forces, are poor in resisting 

compressive forces (Yu, 2003). Usually 

buckling of compressed plates is a nonlinear 

phenomenon that takes place suddenly and may 

result in catastrophic structural failure. This 

underscores the importance of determining the 

buckling capacities of plates to avoid premature 

failures. 

 The first significant work on rectangular 

thin plate buckling was presented by Navier 

who, based on Kirchhoff’s hypothesis, derived 

the stability equation of rectangular plates using 

method of the theory of elasticity (Navier, 

1822). Since then, studies on the elastic and 

inelastic buckling of plates with various other 

types of shapes (circular, skew, quadrilateral, 

triangular, etc), boundary (clamped, free, etc) 

and loading conditions have been extensively 

reported in standard books, research reports and 

journal papers (Timoshenko and Gere 1961, 

Bulson 1970, Wang et al 2005, Xiang et al 

12001, Batdorf and Houbolt 1946). 

Plate buckling may be classified as elastic 

buckling and plastic (inelastic) buckling. In 

elastic buckling analysis, it is assumed that the 

critical buckling load is less than the elastic 

limit of the plate material. However, in practical 

problems, the plate might be stressed beyond 

the elastic limit before the onset of buckling, 

and the buckling problem becomes inelastic 

(plastic) buckling problem. 

 

1.1 Research Aim and Objectives: 
 The aim of this study is to apply the double 

finite Fourier sine integral transform method to 

the elastic buckling analysis of simply 

supported thin plates under uniaxial and biaxial 
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compressive loads. The objectives are as 

follows: 

(i) to apply the double finite Fourier sine 

integral transformation to the governing 

partial differential equation of thin plates 

under uniaxial compressive load and under  

biaxial compressive load; 

(ii) to show that the boundary value problem 

simplifies to an algebraic eigenvalue – 

eigenvector problem in terms of the 

transformed variable; 

(iii) to solve the resulting algebraic 

eigenvalue – eigenvector problem and thus 

determine the buckling equations for the 

two cases of uniaxial compression in the x-

direction, and biaxial compression in both 

the x and y directions; 

(iv) to determine the buckling loads for the case 

of uniaxial compression, and for the case of 

biaxial compression for rectangular thin 

plates simply supported on all four edges. 

 

2. LITERATURE REVIEW 

 

2.1 Elastic Buckling of Rectangular 

Plates: 

 Navier (1822) derived the governing partial 

differential equation for stability analysis of 

rectangular thin plates under distributed 

transverse load by including the twisting action. 

The inclusion of the “twisting” term in the 

stability equation was particularly significant 

because the resistance of the rectangular thin 

plate to twisting can remarkably reduce 

transverse deflections under transverse 

distributed loads. Saint Venant (1883) modified 

the Navier’s equation by including edge forces 

and shearing forces applied in the axial 

directions. Saint Venant’s modified differential 

equation provided the groundwork for much of 

the experimental and theoretical studies on the 

elastic stability and elastic buckling of 

rectangular thin plates with various edge loads 

and edge support conditions. The basic form of 

the plate buckling problem is the problem of a 

simply supported rectangular thin plate under 

uniaxial compressive forces applied on the 

edges. Bryan (1891) first solved the problem by 

using the principle of minimization of the total 

potential energy functional to obtain the values 

of the critical buckling loads. He assumed that 

the buckling shape function for the problem of 

buckling of simply supported rectangular thin 

plates under uniaxial compression forces is a 

double Fourier sine series. Timoshenko (1925) 

assumed the buckling shape function as several 

sinusoidal half waves in the direction of the 

axial compression and used boundary (edge) 

support conditions to obtain a matrix which was 

solved to yield the critical (buckling) load. 

Timoshenko (1925) also studied the elastic 

buckling of uniaxially compressed rectangular 

plates (for uniform compressive force) for 

rectangular thin plates with two opposite edges 

simply supported and the other edges under 

different support conditions. He obtained results 

for buckling loads and buckled shapes that 

agreed with experimental results presented by 

Bridget et al (1934). 

 

2.2 Solution Methods for Elastic Buckling 

Problems: 
 Generally, three broad methods are 

employed in the solution of the elastic buckling 

problems of plates. They are (i) the classical 

methods also called the equilibrium (Euler) 

methods, (ii) the variational methods (Energy 

methods), and (iii) the numerical methods. The 

classical methods aim to obtain closed form or 

mathematical solutions to the governing partial 

differential equations of equilibrium of the 

elastic buckling problem of plates within the 

plate domain, subject to the boundary 

conditions of loading and restraints of the plate 

edges. This result in an eigenvlaue eigenvector 

problem, which yields a characteristic equation 

called the buckling equation which roots yield 

the buckling loads. Mathematically rigorous 

methods for solving partial and ordinary 

differential equations subject to known 

boundary conditions fall into this category. The 

solutions obtained are called exact solutions, 

within the framework of the assumptions and 

the theory employed in constructing the 

governing equations. A major drawback of the 

classical methods is that they are difficult to 
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apply to plates with fixed edges, free edges and 

mixed support conditions. Their application to 

plates with mixed support conditions lead to 

mathematical and analytical difficulties. The 

classical methods have been successfully 

applied to the elastic buckling problem of plates 

with simply supported edges for the case of 

uniaxial compressive load. Classical methods 

include Navier’s double trigonometric series 

method, the separation of variables method, the 

Fourier series method, the methods of integral 

transformation etc. The variational (energy) 

methods are methods of elastic buckling 

analysis of plates based on the application of 

the minimum principle to the total potential 

energy of the plate buckling problem. They 

include the Ritz variational methold, 

Kantorovich variational method, Rayleigh-Ritz 

method, etc. The variational methods aim at 

minimizing the total potential energy functional 

of the elastic buckling problem of plates with 

respect to certain unknown generalised 

parameters of the triad displacement function to 

obtain the characteristic buckling equation, 

whose roots yield the buckling loads. The 

problem reduces to eigen-value-eigen-vector 

problem. Numerical methods of solving the 

elastic buckling problems of plates aim at 

obtaining approximate numerical solutions to 

the problem. They include the finite element 

methods, finite strip methods, boundary element 

methods, weighted residual methods, finite 

difference methods, improved finite difference 

methods, etc. The numerical formulation of the 

boundary value problem of plate buckling also 

yield eigenvalue-eigenvector problems. 

Ibearugbulem and Ezeh (2013) used the Taylor-

Maclaurin’s series shape function in the Ritz 

method to solve the buckling problem of axially 

compressed thin rectangular plate with clamped 

edges. Ezeh et al (2014) also applied the 

Galerkin’s indirect variational method to the 

elastic buckling analysis of thin rectangular 

plates with all edges clamped for the case of 

uniform axial compression. 

 

3. METHODOLOGY AND  

    THEORETICAL FRAMEWORK 

 

3.1 Double Finite Fourier Sine Integral 

Transform 
The method of finite Fourier sine integral 

transformation was introduced by Doetsch 

(1935) for solving boundary value problems. It 

has been developed and generalized by several 

other researchers such as Kneitz (1938), 

Strandhagen (1944), Roettinger (1947) and 

Brown (1944). Mama et al (2017), Mama et al 

(2017) and Mama et al (2017) have successfully 

applied the finite Fourier sine transform method 

to the solution of general engineering problems. 

The double finite Fourier sine integral 

transform of w(x, y), defined over the 

rectangular domain 0 ,x a   0 y b   is 

denoted by w(m, n) and given by: 

0 0

( , ) ( , )sin sin

a b
m x n y

w m n w x y dxdy
a b

 
     (1) 

where, m = 1, 2, 3,     n = 1, 2, 3,   

From this definition, the double finite sine 

integral transform of derivatives of w(x, y) can 

be obtained, using integration by parts; 
2

2
0 0

sin sin

a b
w m x n y

dxdy
a by

  


     

 
2

0

0

( 1) sin ( , )

a
n

y b y

n m x n
w w dx w m n

b a b
 

   
      

 


       (2) 

4

4
0 0

sin sin

a b
w m x n y

dxdy
a bx

  


     

 
4 3

0

0

( , ) ( 1) sin

b
m

x a x

m m n y
w m n w w dy

a a b
 

     
      
   


 

2 2

2 2
0 0

( 1) sin

b
m

x a x

m w w n y
dy

a bx x
 

     
          


  (3) 

2 24

2 2
0 0

sin sin ( , )

a b
w m x n y m n

dxdy w m n
a b a bx y

       
    

     
 

 (4) 

For boundary value problems with Dirichlet 

boundary conditions,  

w(x = 0) = w(x = a) = 0   (5) 
2 2

2 2

0

0

x x a

w w

x x
 

 
 

 
                         (6) 

w(y = 0) = w(y = b) = 0                         (7) 
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2 2

2 2

0

0

y b y

w w

y y
 

 
 

 
                         (8) 

and the double finite sine integral transforms of 

the partial derivatives, Equations (2) – (3) 

simplify further to the following: 

 
22

2
0 0

sin sin ( , )

a b
w m x n y n

dxdy w m n
a b by

    
  

  
 

 (9) 

 
2 24

2 2
0 0

sin sin ( , )

a b
w m x n y m n

dxdy w m n
a b a bx y

       
    

     
 

           (10) 

 
44

4
0 0

sin sin ( , )

a b
w m x n y m

dxdy w m n
a b ax

    
  

  
 

           (11) 

 
44

4
0 0

sin sin ( , )

a b
w m x n y n

dxdy w m n
a b ay

    
  

  
 

          (12) 

 

3.2 Theoretical framework of rectangular 

thin plates under buckling 
Thin plate theory was adopted in this study. The 

governing partial differential equation for thin 

rectangular plates under uniaxial compressive 

force Nx in the x-direction is: (Dima 2015, 

Bouazzar et al 2012, Iyengar 1988, 

Iberugbulem et al 2011, Chattopadhyay 2011) 
2

4

2
0x

w
D w N

x


  


                                   (13) 

 

where 
4 4 4

4 2 2

4 2 2 4
2

x x y y

  
      

   
  

2  is the Laplace operator while 4  is the 

biharmonic operator. 

The equation for thin plates under biaxial 

compressive forces Nx, and Ny acting in the x 

and y directions respectively is: 

 
2 2

4

2 2
0x y

w w
D w N N

x y

 
   

 
            (14) 

 

4. FINITE FOURIER SINE TRANSFORM 

METHOD FOR ELASTIC BUCKLING 

OF SIMPLY SUPPORTED PLATES 

UNDER UNIAXIAL COMPRESSION 

 The simply supported rectangular thin plate 

problem under uniform compressive force Nx as 

shown in Figure 1 is considered. 

 
Figure 1: Simply supported rectangular thin 

plate under uniform compressive force Nx 

 

Applying the double finite Fourier sine 

transformation, we have 
4 4 4 2

4 2 2 4 2
0 0

2 sin sin 0

b a
xNw w w w m x n y

dxdy
D a bx x y y x

      
          

 
     (15) 

4 2

0 0

sin sin 2

b a
m m x n y m

w dxdy
a a b a

      
     

   
 

 2 4

0 0 0 0

sin sin sin sin

b a b a
n m x n y n m x n y

w dxdy w dxdy
b a b b a b

        
     

   
   

  

2

0 0

( , )sin sin 0

b a
xN m m x n y

w x y dxdy
D a a b

   
    

 
 

        (16) 

Using Equation (1), we obtain: 
4 2 2

( , ) 2 ( , )
m m n

w m n w m n
a a b

       
     

     
  

4 2

( , ) ( , ) 0xNn m
w m n w m n

b a D

    
     
   

        (17) 

4 2 2 4 2

2 ( , ) 0xNm m n n m
w m n

a a b b a D

              
                        

        (18) 

2
2 2 2

( , ) 0xNm n m
w m n

a b a D

                           

           (19) 

 

This is an algebraic eigenvalue – eigenvector 

problem. This is a system of homogeneous 

equations. For non-trivial solutions, 

( , ) 0w m n   hence the stability equation is 

given by the requirement that the coefficient 

matrix will vanish. 

 

Thus, 
2

2 2 2

0xNm n m

a b a D

        
               

            (20) 
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Solving, 
2

2 2 2

xNm m n

a D a b

        
              

            (21) 

2 4 2 2 4

2xN a m m n n

D m a a b b

             
                       

    (22) 

2 4 2 2 4

2x

a m m n n
N D

m a a b b

             
                       

 (23) 

2 2 2 4

2
m n a n

D
a b m b

          
                   

       (24) 

2 2 4 2
2

2 4
2

m n n a
D

a b m b

     
            

          (25) 

2 2 4 4
2 2

2 2 2 4
2x

D a n a
N m n

a b m b

 
    

 

            (26) 

Let ap
b

   

2 4 4
2 2 2

2 2
2x

D n p
N m p n

a m

 
    

 

            (27) 

2 4 4
2 2 2

2 2 2
2x

D n p
N m p n

b p m

 
    

 

            (28) 

2 2 4 2
2

2 2 2
2x

D m n p
N n

b p m

 
    

 

            (29) 

2
2 2 2

2 2x

D m n p D
N k

p mb b

  
    

 

            (30) 

2 2 2 4 2

2 2 2
2x

D m m n p n p
N

p mb p m

 
    

 

            (31) 

 

From the buckling load expression, it can be 

observed that as n increases, the critical load Nx 

also increases. Thus, for the lowest value of Nx, 

n must be equal to one. This means that the 

buckling mode shape is one half sine wave 

along the y coordinate direction. The lowest 

value of Nx can then be calculated using the 

calculus of minima and maxima. 
2

2 2

2 1
0xdN D m p p

dm p m pb m

  
     

  
        (32) 

This gives 

m = p                                                           (33) 

Hence the lowest or critical buckling load is 

obtained as  

( , 1)
crx xN N m p n                           (34) 

22 2

2 2

1 4D p p D

p pb b

  
   

 
                        (35) 

Hence, a Kirchhoff rectangular plate simply 

supported along the four edges x = 0, x = a, y = 

0, and y = b and subjected to uniform 

compressive force in the x-direction buckles 

with one half wave in the y-direction and p half 

waves in the x-direction i.e. p must be an 

integer. This implies that the rectangular plate 

buckles into square plates. For non-integer 

values of p, the buckling load is observed to be 

higher than that for integer values. For non 

integer values the critical buckling load (Nx)cr 

can be expressed as 
2

2
( )x cr

kD
N

b


                                     (36) 

where 

2
2m n p

k
p m

 
   
 

                        (37) 

k is called the buckling or stability coefficient. 

The critical stress xx  per unit length is found 

as: 
2

2

( )
( )

12(1 )

x cr
xx cr

N kE t

t b

 
    

   
            (38) 

2 3

2 212(1 )

k Et

tb


 

 
                                    (39) 

2 2

2 212(1 )

k Et

b


 

 
                                    (40) 

22

2
( )

12(1 )
xx cr

E t
k

b

  
   

   
                        (41) 

2

( )xx cr

t
K E

b

 
   

 
                                    (42) 

where 
2

212(1 )

k
K




 
                        (43) 

The expression for the critical compressive 

stress 
crxx  in thin plates is called the Bryan 

equation, after the English naval engineer who 

derived it from first principles using the total 
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potential energy minimization method to 

calculate the buckling loads of thin rectangular 

plates in the hulls of steel ships. 

 

Table 1: Stability coefficients of uniaxially 

compressed rectangular thin plates with simply 

supported edges 
a

b
 K (Iyengar, 1988) K (Present study) 

0.1 102.01 102.01 

0.2 27.04 27.04 

0.3 13.2011 13.2011 

0.4 8.41 8.41 

0.5 6.25 6.25 

0.6 5.1378 5.1378 

0.7 4.5308 4.5308 

0.8 4.2025 4.2025 

0.9 4.0446 4.0446 

1.0 4 4 

 

For long plates, 3,a
b
  μ = 0.3, K = 4.0, and 

2

2
3.62

crxx

t
E

b
                                      (44) 

For small values of a/b, i.e. / 1,a b   when  

m = 1, the buckling coefficient simplifies to: 

 
2 2

2

1
b ak

ba

   
   

  
                        (45) 

Then, when  
2

1,a
b

  the buckling 

coefficient simplifies further to: 

 
2

bk
a

;                                                 (46) 

Thus for  
2

1,a
b

  the critical stress 

becomes 
2 2 2

2 2 212(1 )crxx

E b t

a b


  

 
                        (47) 

2 2

2 212(1 )crxx

E t

a

 
       

                        (48) 

 

5. FINITE FOURIER SINE INTEGRAL 

TRANSFORM METHOD FOR THE 

ELASTIC BUCKLING OF SIMPLY 

SUPPORTED RECTANGULAR THIN 

PLATES UNDER BIAXIAL 

COMPRESSION 
 

 A rectangular thin plate simply supported 

on all four edges x = 0, x = a, y = 0, y = b and 

subject to biaxial compressive loads Nx and Ny 

in the x and y directions as shown in Figure 2 is 

considered. 

 

 
Figure 2: Simply supported rectangular thin 

plate under biaxial compressive forces. 

 

 

Applying the double finite Fourier sine integral 

transformation to the governing plate equation, 

we obtain: 
4 4 4 2

4 2 2 4 2
0 0

2

a b
xNw w w w

Dx x y y x

    
       

    

 
4

2
sin sin 0

yN w m x n y
dxdy

D a by

  
  

           (49) 

The linearity property of the finite Fourier sine 

integral transformation allows us to write: 

 
4 4

4 2 2
0 0 0 0

sin sin 2 sin sin

b a b a
w m x n y w m x n y

dxdy dxdy
a b a bx x y

     


  
   

 

 
4 2

4 2
0 0 0 0

sin sin sin sin

b a b a
xNw m x n y w m x n y

dxdy dxdy
a b D a by x

     
 

 
   

 

 
2

2
0 0

sin sin 0

b a
yN w m x n y

dxdy
D a by

  
 


          (50) 
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4

0 0

sin sin

b a
m m x n y

w dxdy
a a b

   
 
 

   

2 2

0 0

2 sin sin

b a
m n m x n y

w dxdy
a b a b

      
    

   
   

4

0 0

sin sin

b a
n m x n y

w dxdy
b a b

   
  
 

    

2

0 0

sin sin

b a
xN m m x n y

w dxdy
D a a b

   
  

 
   

2

0 0

sin sin 0

b a
yN n m x n y

w dxdy
D b a b

   
  

 
         (51) 

4 2 2 4

( , ) 2 ( , ) ( , )
m m n n

w m n w m n w m n
a a b a

          
        

       
2 2

( , ) ( , ) 0
yx

NNm n
w m n w m n

a D b b

    
     
   

    (52) 

2
2 2 2 2

( , ) 0
yx

NNm n m n
w m n

a b a D b D

                                   

    (53) 

We thus obtain an algebraic eigenvalue – 

eigenvector problem. This is a system of 

homogeneous algebraic equations.  For non-

trivial solutions, ( , ) 0,w m n   and the stability 

equation is given by the requirement that the 

coefficient matrix will vanish. Thus, the 

stability equation is obtained as: 
2

2 2 2 2

0
yx

NNm n m n

a b a D b D

           
                    

       (54) 

Solving, 
2

2 2 2 2
yx

NNm n m n

a D b D a b

           
                   

    (55) 

This is the same equation obtained by Dima 

(2015) and Bouazzar et al (2012) 

Let Nx  =  N0,  0;yN N 
y

x

N

N
   

2
2 2 2 2

0 0

m n m n
N N D

a b a b

           
                    

    (56) 

2
2 2 2 2

0

m n m n
N D

a b a b

             
                          

    (57) 

2
2 2

0 2 2
( , )

m n
D

a b
N m n

m n

a b

     
         

     
          

            (58) 

Let as a sb
b

     

 
4 4 2 2 2 2 4 4

4 4 2 2 2 4

0 2 2 2 2

2 2 2

2

( , )

m m n n
D

s b s b b b
N m n

m n

s b b

    
  

 
  

  
 

     (59) 

 
4 4 2 4 2 2 4 4 4

4 4

0 2 2 2 2 2

2 2

2

( , )

m m n s s n
D

s b
N m n

m s n

s b

     
 
 

    
 
 

     (60) 

 
4 4 2 4 2 2 4 4 4

0
4

2
( , )

m m n s s n
N m n D

s

    


2 4s b

2

2

s

b

2b
2 2 2 2 2m s n

 
 
     

  (61) 

 
2 4 2 2 2 4 4

0 2 2 2 2 4

2
( , )

D m m n s s n
N m n

b m s n s

   
     

   (62) 

 
2 4 2 2 2 4 4

0 2 2 2 2 2

2
( , )

D m m n s s n
N m n

s b m n s

   
     

  (63) 

 
2 2 2 2 2

0 2 2 2 2

( )
( , )

( )

D m n s
N m n

a m n s

  
     

            (64) 

 
2

0 12
( , )

D
N m n K

a


               (65) 

 
2

0 22
( , )

D
N m n K

b


                                     (66) 

 
4 2 2 2 4 4

2 2 2 2 2

2m m n s n s
K

m s n s

 


 
              (67) 
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2 2 2 2

1 2 2 2

( )m n s
K

m n s




 
                                    (68) 

For ,bp
a

   

 
2 4 4 2 2 2 4

0 2 2 2 2

2
( , )

D p m p m n n
N m n

b p m n

   
     

    (69) 

The critical buckling load is the smallest value 

of N0(m, n). For a particular simply supported 

rectangular thin plate under biaxial uniform 

compression forces Nx, Ny, the critical buckling 

load is seen from Equation (69) to be dependent 

upon the values of m, n,   and the geometric 

and elastic properties of the plate. 

 

 

5.1 Biaxial Buckling of Square Plates: 
 For square thin plates subject to the same 

magnitude of uniform compressive forces on 

both edges, i.e. biaxial compression with 1,   

we obtain from Equation (69): 
2 4 2 2 4

0 2 2 2

2
( , )

D m m n n
N m n

a m n

   
    

         (70) 

 
2 2 4

0 2 2

1 2
( 1, )

1

D n n
N m n

a n

   
     

            (71) 

 

For rectangular plates, where 1,    

 
2

2 2 2
0 2
(m, )

D
N n m p n

b


              (72) 

 

The critical buckling load occurs when m = n = 1 

and  

 
2 2

2

2 2
(1 )

crxx

D D
N p k

b b

 
               (73) 

21k p    (74) 

For square plates, p = 1, 

 
2

2

2
crxx

D
N

b


                                     (75) 

 

6. DISCUSSIONS 

 In this study, the double finite Fourier sine 

integral transform method has been successfully 

applied to solve the buckling problem of simply 

supported rectangular thin plate under uniform 

uniaxial and biaxial compressive forces. The 

double finite Fourier sine transformation was 

applied to both sides of the governing partial 

differential equation, for the two cases of 

uniform axial compression force Nx in the x-

direction and uniform biaxial compression 

forces Nx and Ny in the x- and y-directions 

respectively. Consequently, the fourth order 

linear partial differential equation was found, 

upon application of the linearity property of the 

finite Fourier sine integral transformation and 

integration by parts, to simplify to the algebraic 

eigenvalue – eigenvector problems presented as 

Equations (18) or (19) for the case of the simply 

supported rectangular thin plate under uniform 

uniaxial compression, and Equation (53) for the 

case of the simply supported rectangular thin 

plate under uniform biaxial compression. The 

stability equations were then obtained for non 

trivial solutions, by enforcing the requirement 

that ( , ) 0w m n   and then the determinant of 

the coefficient matrix should be zero. The 

stability or characteristic buckling equations 

were thus found for the case of simply 

supported thin rectangular plate under uniaxial 

compression Nx as Equation (20). This was 

solved to determine the buckling load as 

Equation (26). Equation (26) reveals that the 

buckling load depends upon the geometrical 

shape of the rectangular plate as measured by 

the in-plane dimensions a and b; the integer 

parameters m and n, and the flexural rigidity of 

the plate material D, which in turn depends 

upon the plate thickness, t, the plate modulus of 

elasticity, E, and the Poisson’s ratio, .  The 

buckling load was further presented in terms of 

the buckling coefficient, k, as Equation (38), for 

simply supported rectangular thin plate under 

uniaxial compression.  The critical buckling 

load is obtained using the calculus of maxima 

and minima on the expression for the buckling 

load; and this was found as Equation (35). The 

critical buckling stress was found as Equation 
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(41). The buckling coefficient for simply 

supported thin rectangular plates under uniaxial 

compression Nx as shown in Table 1 was found 

to be exactly the same as the expression 

obtained by Iyengar (1988), Timonshenko 

(1925), Bryan (1891) and Navier (1822), who 

used other solutions methods like the Navier 

series method, and total potential energy 

minimization methods to solve the same  

problem. For the case of simply supported thin 

rectangular plates under uniform biaxial 

compression, Nx and Ny, the buckling load was 

found for the case where the biaxial 

compression forces are related by 

0y xN N N     where y

x

N

N
   as 

Equation (38). The solution is also presented in 

terms of the plate aspect ratios, s = a/b or p =b/a 

as Equations (64) and (69). This equation was 

particularized to the problem of square thin 

plates subject to the same magnitude of uniform 

compressive forces on both edges, and the 

buckling load obtained generally as Equation 

(70). The critical buckling load was obtained 

for simply supported rectangular thin plates 

under the same magnitude of uniform 

compressive force as Equation (72) and the 

critical buckling load obtained from the 

calculus of maxima and minima applied to 

Equation (72) as Equation (73). For square thin 

plates simply supported on the four edges and 

subject to biaxial compression forces of the 

same magnitude, the critical buckling load was 

obtained as Equation (75). 

 

7. CONCLUSIONS 
From this work, the following conclusions can 

be made: 

(i) the double finite Fourier sine integral 

transformation, being a linear 

transformation is ideally suitable for the 

solution of the linear partial differential 

equation of fourth order that governs 

simply supported thin rectangular plates 

under uniform uniaxial and biaxial 

compression forces on the edges of the 

plate 

 

(ii) the double Fourier sine integral 

transformation is appropriate for the 

problem since the simply supported 

edges satisfy the Dirichlet boundary 

conditions, which offer simplifications 

to the applications of the method 

 

(iii) the application of the finite Fourier sine 

integral transformation simplifies the 

problem of simply supported thin plate 

buckling from a differential equation to 

an algebraic eigenvalue equation 

(iv) the characteristic buckling equations 

obtained for both cases are the same as 

the characteristic buckling equations 

obtained by other researchers who used 

Navier’s series and energy minimization 

methods 

 

(v) the critical buckling loads obtained were 

also the same as the critical buckling 

loads obtained in literature by other 

scholars who used Navier’s series and 

energy minimization methods. 
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