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ABSTRACT 
 In this study, the Kantorovich-Vlasov method was applied to the flexural analysis of simply 

supported rectangular Kirchhoff plates under hydrostatic load distribution over the entire plate 

domain. Vlasov method was used to obtain the shape function in the x-direction, and Kantorovich 

method was used to choose the shape function for the plate in series form; as the product of unknown 

functions gm(y) and the shape functions in the x-direction. The total potential energy functional   

was then obtained, and minimized using Euler-Lagrange differential equations to obtain the 

unknown functions (gm(y)). Enforcement of boundary conditions in the y-direction and the demands 

of symmetry led to the determination of integration constants. Bending moments were obtained 

using the bending moment-deflection equations. Deflections and bending moments at the center of 

the plate were then obtained in terms of the aspect ratios. The results for deflection, and bending 

moments at the center of the plate were found to be the same as results obtained by Timoshenko and 

Woinowsky-Krieger who used the Levy method. 
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1. INTRODUCTION 
 Plates are three dimensional structures with 

one dimension that is much smaller than the 

other two inplane dimensions 

(Chandrashekhara, 2011; Szilard, 2004; 

Timoshenko and Woinowsky-Krieger, 1959). 

They have extensive applications in civil, 

mechanical, aeronautical, naval and 

geotechnical engineering in the modeling of 

ship hulls, roof and floor slabs, retaining walls, 

foundation slabs, etc. Plates are classified as 

thin plates, moderately thick plates and thick 

plates based on the ratios of the thickness (h) to 

the least lateral dimension, (a). They are also 

classified according to the geometry as 

rectangular, square, elliptical, skew, circular, 

rhombic, etc. They are also described based on 

their material properties as homogeneous, 

heterogeneous, anisotropic, isotropic, and 

orthotropic. Several theories, and models have 

been used to describe plates behaviour. They 

include: Kirchhoff plate theory, also called the 

Kirchhoff-Love plate theory or the classical 

plate theory, Mindlin (1951) plate theory (Ike, 

2017). Reissner (1945) plate theory, Levy plate 

theory, Refined plate theories (Shimpi, 2007; 

Suetake, 2006). Kirchhoff plate theory is 

effective for thin plates and is adopted in this 

study. 

 

2. METHODS OF ANALYSIS OF 

PLATES 
 Two basic methods are used to solve the 

boundary value problems of plates. They are 

broadly – closed form analytical methods and 

numerical or approximate methods. Closed 
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form analytical methods are mathematical 

methods that seek to obtain solutions to the 

plate problem that satisfy the governing 

equations at all points on the plate region as 

well as on the plate boundaries. They include: 

Navier (1823) series method, Levy (1899) 

series method separation of variables method, 

eigen function expansion methods, and integral 

transform methods (Mama et al, 2017). They 

have been used to obtain solutions to plate 

bending problems for different edge support 

conditions and different loading conditions 

(Chandrashekhara, 2011; Szilard, 2004; 

Kapadiya and Patel, 2015;  Timoshenko and 

Woinowsky-Krieger 1959). Numerical 

methods seek to obtain approximate solutions 

to the plate problem, and are used in 

complicated problems where closed form 

solutions are difficult to obtain. Numerical 

methods include: finite element methods, 

boundary element methods, finite difference 

methods (Kapadiya and Patel, 2015), 

Variational Ritz methods (Aginam et al, 2012), 

Variational Galerkin methods (Osadebe et al, 

2016; Nwoji et al, 2017), Variational 

Kantorovich methods (Nwoji et al, 2017; Ike, 

2017), Weighted residual methods, Bubnov-

Galerkin methods, and Collocation methods. 

Numerical methods have been extensively used 

to solve plate problems for different types of 

loading and edge support conditions (Eze et al, 

2013; Aginam et al, 2012; Osadebe et al, 2016; 

Nwoji et al 2017; Ike, 2017). 

 

3. RESEARCH AIM AND 

OBJECTIVES 
 The aim of this study is to apply the 

Kantorovich-Vlasov method to the analysis of 

simply supported rectangular Kirchhoff plates 

under hydrostatic load distribution over the 

entire plate region. The specific objectives are: 

(i) to use the Vlasov method to derive 

suitable displacement shape functions 

for the simply supported plate in the x 

coordinate direction 

(ii) to obtain the total potential energy 

functional   for the plate flexure 

problem considered 

(iii) to obtain the Euler-Lagrange 

differential equations for the 

extremization of the total potential 

energy functional derived 

(iv) to solve the Euler-Lagrange differential 

equations subject to the boundary 

conditions of the plate edges in the y-

direction 

(v) to obtain the bending moment 

expressions 

(vi) to obtain the values of the deflection 

and bending moments at the center of 

the plate for various plate aspect ratios 

 

4. APPLICATION OF 

KANTOROVICH-VLASOV 

METHOD 
 Consider the simply supported rectangular 

Kirchhoff plate under linearly distributed 

(hydrostatic) load of intensity p(x) = p0x/a as 

shown in Figure 1. 

 
Figure 1: Rectangular Kirchhoff plate under 

hydrostatic load 

 

The system of Cartesian coordinate axes is 

chosen as shown in Figure 1 in order to take 

advantage of the symmetrical nature of the 

problem in the y coordinate direction. The plate 

is subjected to a transverse distributed load of 

intensity 0( ) xp x p
a

  over the plate domain, 

0 ,x a   2 2.b by   The displacement 

(basis) shape function is chosen in the x-
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direction using the Vlasov method, as the eigen 

function of a harmonically vibrating prismatic 

Euler-Bernoulli beam with identical end 

support conditions as the plate in the x 

direction. 

4.1 Displacement Shape Function in the 

x-Direction: 
 Following Vlasov method, the 

displacement shape function of the Kirchhoff 

plate is chosen as the displacement shape 

function of a prismatic Bernoulli-Euler beam 

with identical end conditions under natural 

vibrations. For free vibrations of prismatic 

Euler-Bernoulli beams with simply supported 

ends at x = 0, x = a, the governing equation is 
4 2

4 2

( , ) ( , )
0

X x t X x t
EI m

x t

 
 

 
           (1) 

Subject to the boundary conditions,  

( 0, ) 0 ( 0, )X x t X x t                 (2) 

( , ) 0 ( , )X x a t X x a t                          (3) 

where X(x, t) is the dynamic displacement, x is 

the space variable in the longitudinal axis of 

the beam, t is time. EI is modulus of rigidity of 

the beam, I is moment of inertia, E is Young’s 

modulus of elasticity, m is the mass per unit 

length of the beam. 

For free harmonic vibrations,  

( , ) ( ) ( ) ( )cosX x t f x t f x t               (4) 

where ( )t  is the harmonic function 

expressing dependence of X on time, and f(x) is 

the modal displacement function.  

Substituting Equation (4) into Equation (1) 

yields: 
2

( ) ( ) cos 0iv n
n

m
f x f x t

EI

 
    

 

             (5) 

For non-trivial solutions, cos 0nt              (6) 

The characteristic equation then becomes: 
2

( ) ( ) 0iv nm
f x f x

EI


               (7) 

Let 
2 4

4
nm

EI a

 
               (8) 

Then Equation (7) becomes: 

4

4
( ) ( ) 0ivf x f x

a


               (9) 

The general solution of Equation (9) is: 

1 2 3 4( ) sin cos sinh cosh
x x x x

f x c c c c
a a a a

   
          (10) 

where c1, c2, c3 and c4 are the four constants of 

integration which can be obtained from the 

boundary conditions. 

For the mth vibration, the eigen functions are: 

1 2 3 4( ) sin cos sinh cosh
m m m m

m m m m
m

x x x x
f x c c c c

a a a a

   
   

      (11) 

For simple supports at the edges x = 0, x = a, 

the boundary conditions are: 

( 0) 0mf x     ( 0) 0mf x             (12) 

( ) 0mf x a    ( ) 0mf x a            (13) 

Differentiating Equation (11) twice with 

respect to x, we obtain: 
2

1 2 3 42
( ) sin cos sinh cosh

m m m

m m m m m
m m

x x x x
f x c c c c

a a a aa

     
      

 

   (14) 

Applying the boundary conditions in Equation 

(12) and (13), we obtain: 

2 4(0) 0
m m

f c c                                     (15) 

2 4(0) 0
m m

f c c                           (16) 

1 2 3 4( ) sin cos sinh cosh 0
m m m mm m m mf a c c c c               (17) 

 
2

1 2 3 42
( ) sin cos sinh cosh 0

m m m m

m
m m m mf a c c c c

a


          

      (18) 

Solving Equations (15), (16), (17) and (18), we 

obtain: 

2 0
m

c                          (19) 

4 0
m

c                (20) 

3 0
m

c               (21) 

Thus, 

1( ) sin
m

m
m

x
f x c

a


              (22) 

Then ( ) 0mf x a   would lead to: 

1 sin 0
m mc    (23) 

For non trivial solutions, 

1 0
m

c                (24) 

sin 0m                 (25) 

1sin 0m m                 (26) 

m = 1, 2, 3,  

Then Equation (22) becomes: 
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1( ) sin
mm

m x
f x c

a


              (27) 

The eigen functions for simply supported 

prismatic Euler-Bernoulli beams thus gives the 

displacement shape function in the x-direction: 

( )(shape function) sinm

m x
f x

a


            (28) 

 

4.2 Total Potential Energy Functional: 
 The total potential energy functional   for 

a simply supported rectangular Kirchhoff plate 

under transverse distributed load p(x) is given 

by; 

2 2

2 2( )
2

R R

D
w dxdy pw dxdy               (29) 

where w is the deflection of the plate middle 

surface, D is the flexural rigidity of the plate, 

and 2  is the Laplacian given by: 
2

2

2 2x y

 
  

 
           (30) 

Following the Kantorovich method, the plate 

deflection is considered as: 

1

( , ) ( )sinm

m

m x
w x y g y

a






              (31) 

where g(y) is an unknown function of y which 

we seek to determine. 

Substituting Equation (31) into Equation (29), 

we obtain; 

2

2

2
2

10

( ) ( ) sin
2

b

b

a

m m

m

D m m x
g y g y dxdy

a a





    
           

 
  

2

2

0

10

( )sin

b

b

a

m

m

p xm x
g y dxdy

a a





 
  

 
             (32) 

 
2

2

2
2

1 0

( ) 2 ( ) ( )
2

b

b

a

m m m

m

D m
g y g y g y

a



 

  
     

 
     

 
2

2

4
2 2 0

1 0

( ) sin sin ( )

b

b

a

m m

m

p xm m x m x
g y dxdy g y dxdy

a a a a



 

   
  
  

  
   (33) 

Simplifying, 

 
2

2

2
2

1

( ) 2 ( ) ( )
4

b

b

m m m

m

Da m
g y g y g y

a



 

  
     

 
    

 
2

2

4
2 10

1

( ) ( 1) ( )

b

b

m
m m

m

p am
g y dy g y dy

a m




 

 
   

  
 

   (34) 

or 

 
2

2

2
2

1

( ) 2 ( ) ( )
4

b

b

m m m

m

Da m
g y g y g y

a



 

  
     

 
 

  
4 1

04 ( 1)
( ) ( )

m

m m

pm
g y g y dy

a m D

  
   

  

          (35) 

 ( ), ( ),m mf g y g y y                         (36) 

 

 

 

4.3 Euler-Lagrange Differential 

Equation: 

The Euler-Lagrange differential equation 

which gives the condition for the extremization 

of the functional   is given by: 
2

2
0

m m m

F F d F

g y g gdy

      
     

       
           (37) 

where F is the integrand in the expression for 

.   

   
2 4 1

2 2 04 ( 1)
( ) 2 ( ) ( ) ( ) ( )

m

m m m m m

pm m
F g y g y g y g y g y

a a m D

    
       

   

      (38) 

Performing the differentiations, the Euler-

Lagrange differential equation of equilibrium 

becomes the fourth order linear ordinary 

differential equation in gm(y): 
2 4 1

02 ( 1)
( ) 2 ( ) ( )

m
iv
m m m

pm m
g y g y g y

a a m D

    
     

   

      (39) 

 

4.4 Solution of the Euler-Lagrange 

Differential Equation: 
For the homogeneous solution, 

2 4

( ) 2 ( ) ( ) 0iv
m m m

m m
g y g y g y

a a

    
     

   
       (40) 

Let the homogeneous solution gh(y) be in the 

form: 

( ) mk y
hg y e                                              (41) 
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Then, 
2 4

4 22 0mk y
m m

m m
k k e

a a

     
           

    (42) 

For non trivial solutions, 

0mk y
e                                               (43) 

The auxiliary (characteristic) polynomial 

becomes: 
4

4 22 0m m

m m
k k

a a

    
     

   
           (44) 

The roots are: 

m

m
k

a


    (twice)            (45) 

m

m
k

a

 
  

 
  (twice)            (46) 

The homogeneous solution becomes 

( ) cosh sinhh m m

m y m y m y
g y A B

a a a

  
    

cosh sinhm m

m y m y m y
C D

a a a

  
    

 (47) 

The Kirchhoff plate bending problem is 

symmetric in the y-direction, and it is expected 

that the deflection gh(y) be symmetrical. 

Hence, for symmetry,  

0mC                (48) 

0mD                (49) 

and the homogeneous solution becomes 

( ) cosh sinhh m m

m y m y m y
g y A B

a a a

  
           (50) 

The particular solution ( )pg y  should satisfy 

the non-homogeneous Euler-Lagrange 

differential equation of equilibrium (Equation 

(39)). 

Thus, 
2 2 1

02 ( 1)
( ) 2 ( ) ( )

m
iv
p p p

pm m
g y g y g y

a a m D

    
     

   

      (51) 

The applied hydrostatic load is constant along 

the y direction. Hence, the particular solution is 

expected to be constant in the y direction. 

Thus, ( ) 0iv
p pg y g                (52) 

Then Equation (51) becomes: 

4 1
02 ( 1)

( )
m

p

pm
g y

a m D

 
 

 
            (53) 

 
4 1

0
5

2 ( 1)
( )

( )

m

p

p a
g y

m D





                       (54) 

 

4.5 General solution: 
The general solution, by the principle of 

linearity is the sum of the homogeneous and  

 

particular solutions, and is given by: 

1

( , ) cosh sinhm m

m

m y m y m y
w x y A B

a a a





  
 


   

4 1
0
5 5

2 ( 1)
sin

mp a m x

aD m

  
  

             (55) 

where Am and Bm are constants that are 

determined using the boundary conditions of 

the plate on the edges .
2

by     

 

4.6 Enforcement of Boundary:      

Conditions at 
2

by     

The boundary conditions on the edges 

2
by    are 

 , 0
2

bw x y                                       (56) 

 
2

2
, 0

2

w bx y
y


  


                       (57) 

From condition in Equation (56), we have: 
4 1

0
5

2 ( 1)
cosh sinh 0

2 2 2 ( )

m

m m

p am b m b m b
A B

a a a m D

  
  



      (58) 

Using Equation (57), we obtain: 

cosh 2cosh sinh 0
2 2 2 2

m m

m y m b m b m b
A B

a a a a

    
   

 

   (59) 

From Equation (59), we write: 

2 tanh
2 2

m m

m b m b
A B

a a

  
   

 
           (60) 

Substituting Equation (60) into Equation (58), 

we obtain: 
4 1

0
5

2 ( 1)
2 tanh sinh

2 2 2 2 ( )

m

m m

p am b m b m b m b
B B

a a a a m D

    
     

 

        (61) 

Simplifying Equation (61), 
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41
0

5

( 1)

( ) cosh
2

m

m

p a
B

m b D
m

a







            (62) 

Using Equation (60), 

1
4

0

5

2 tanh ( 1)
2 2

( ) cosh
2

m

m

m b m b

p aa a
A

m b D
m

a

  
  

  




        (63) 

From Equation (31), the deflection is given by 

4 1
0
5 5

1

2 ( 1)
( , ) cosh sinh sin

m

m m

m

p am y m y m y m x
w x y A B

a a a aD m





     
     


      (64) 

where Am and Bm are given by Equations    (63) 

and (62) respectively. 

 

4.7 Deflection along the x-axis: 
The deflection along the x-axis, (y = 0) is given 

from Equation (64), by: 
4 1

0
5 5

1

2 ( 1)
( , 0) sin

m

m

m

p a m x
w x y A

aD m





  
     

    (65) 

4 4 1
0 0

5 5
1

2 ( 1)
sin

m

m

m

p a p a m x
A

D aD m





  
    

          (66) 

where 
4

0
m m

p a
A A

D
             (67) 

and 
4

0
m m

p a
B B

D
                                    (68) 

For square Kirchhoff plate under hydrostatic 

load, the deflection along the x-axis is obtained 

as: 

 4
30 2 3

( , 0) 2.055sin 0.177sin 0.025sin ... 10
p a x x x

w x y
D a a a

   
     

 

     (69) 

The deflection at the center (x = a/2, y = 0) of a 

square Kirchhoff plate under hydrostatic load 

is then found as: 

 
4

3 0, 0 2.03 10
2

p aaw x y
D

               (70) 

By using the calculus of maxima and minima 

on Equation (69), we find that maximum 

deflection occurs at the point given by: 

( , 0) 0
w

x y
x


 


                                   (71) 

Using Equation (71) on Equation (69) we 

obtain: 

x = 0.557a                                             (72) 

The maximum deflection of a square Kirchhoff 

plate under hydrostatic load is thus obtained as: 

 
4

3 0
max 0.557 , 0 2.06 10

p a
w w x a y

D

          (73) 

 

4.8 Bending Moment Distribution: 

The bending moment distribution is obtained 

using the bending moment deflection relations: 
2 2

2 2xx

w w
M D

x y

  
       

            (74) 

2 2

2 2yy

w w
M D

y x

  
       

            (75) 
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           (77) 

At the center of the plate x = a/2, y = 0, 
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0
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Similarly, 
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
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The equations for the deflection along the x 

axis, Equation (66), and bending moments 

Equations (80) and (84) at the center of a 

rectangular Kirchhoff plate under hydrostatic 

load are then used to determine the values for 

deflection and bending moments for varying 

values of the plate aspect ratios b/a. The 

deflections and bending moments were then 

expressed in terms of deflection coefficients, 

,  and bending moment coefficients, ,xx yy   

and presented in Table 1, where 

 
4

0, 0
2

a aw x p
D

                          (85) 

  2
0, 0

2xx xx
aM p a                         (86) 

  2
0, 0

2yy yy
aM p a                         (87) 

Table 1: Deflection and bending moment 

coefficients at the center of rectangular 

Kirchhoff plates under hydrostatic load 

distribution 0( ) xp x p
a

  

b
a

 
4

0
aw p

D
 

310  2
0xx xxM p a 

 

2
0yy yyM p a 

 

1 2

2.03 
0.0239 0.0239 

1.1 2.43 0.0276 0.0247 

1.2 2.82 0.0313 0.0250 

1.3 3.19 0.0346 0.0252 

1.4 3.53 0.0376 0.0253 

1.5 3.86 0.0406 0.0249 

1.6 4.15 0.0431 0.0246 

1.7 4.41 0.0454 0.0243 

1.8 4.65 0.0474 0.0239 

1.9 4.87 0.0492 0.0235 

2 5.06 0.0508 0.02322 

3 6.12 0.0594 0.0202 

4 6.41 0.0617 0.0192 

5 6.48 0.0623 0.0187 

  6.51 0.0625 0.0187 

 

5. DISCUSSIONS 
The Kantorovich-Vlasov method has been 

successfully applied to the bending analysis of 

simply supported rectangular Kirchhoff plates 

under linearly distributed transverse load of 

intensity p(x) = p0x/a applied over the entire 

plate domain. Vlasov’s method was used to 

obtain the displacement shape function of the 

plate in the x-direction as Equation (28). 

Kantorovich variational method was then 

applied to determine the deflection function 

which minimized the total potential energy 

functional   for the Kirchhoff plate presented 

in Equation (29). In seeking to extremize the 

total potential energy functional, Kantorovich 

method was adopted and the unknown plate 

deflection function was sought in the form 

expressed as Equation (31) which contained 

unknown functions gm(y) of the y-coordinate 

variable. This resulted in the total potential 

energy functional expressed by Equation (35), 

which depends upon y, gm(y) and ( ).mg y  

Euler-Lagrange differential equation was then 

applied to obtain the conditions for extremum 

of the total potential energy functional as 

Equation (39), a fourth order linear ordinary 

differential equation in terms of gm(y). The 

corresponding Euler-Lagrange differential 

equation, Equation (39), was solved using the 

method of undetermined parameters, to obtain 

the homogeneous solution as Equation (47) and 

the particular solution as Equation (54). 

Symmetry was applied to obtain the general 

solution for the deflection from the linearity 

principle as Equation (55). The boundary 

conditions along the edges / 2y b   were 

used to obtain the unknown integration 

constants as Equations (62) and (63). Thus the 

deflection was completely determined as 

Equation (64), which was used to obtain the 

deflection of square plates along the x-axis as 

Equation (69) and the center deflection as 

Equation (70). The maximum deflection was 

found to occur at x = 0.557a, and was found to 
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be given by Equation (73). The bending 

moment distributions Mxx, Myy over the plate 

domain were obtained as Equations (76) and 

(77). These were used to obtain the bending 

moments at the center of the plate as Equations 

(80) and (84). The bending moment Equations 

(80) and (84) were then used to compute the 

bending moments coefficients xx  and yy  for 

the plate center which are shown in Table 1. A 

comparison of the deflection coefficients and 

bending moment coefficients presented in 

Table 1 shows that they are the same as those 

presented by Timoshenko and Woinowsky-

Krieger for the same problem of simply 

supported plates solved using Levy’s method. 

 

 

 

6. CONCLUSIONS 
From the study, the following conclusions are 

made: 

(i) the Kantorovich-Vlasov method can be 

successfully applied to the solution of 

Kirchhoff plate flexure problems for 

simply supported edges and static 

transverse loads. 

(ii) the solution obtained for deflection 

function is a single trigonometric series 

containing hyperbolic functions. 

(iii) the solutions obtained for the bending 

moment distributions Mxx, Myy are single 

trigonometric series containing 

hyperbolic functions. 

(iv) the solution obtained for deflection at the 

center of the rectangular Kirchhoff plate 

under hydrostatic load distribution is a 

rapidly convergent series; and convergent 

results to the exact solutions for center 

deflections were obtained using a few 

terms of the series. 

(v) the solutions obtained for bending 

moments (Mxx and Myy) at the center of 

the plate are rapidly convergent series; 

and convergent results to the exact 

solutions for bending moments at the 

center were obtained using a few terms of 

the series. 
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