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ABSTRACT 

 

In this work, the Kantorovich variational method was applied to determine the natural frequencies of 

vibration of thin rectangular plates with two opposite edges clamped and the other two edges simply 

supported. Kirchhoff-Love theory of plates was used to describe the governing differential equation 

of the plate under dynamic loads. The plate considered was assumed to be made of homogeneous, 

isotropic material. Following, Kantorovich methodology, the deflection function was assumed to be 

a linear combination of the product of coordinate (basis) functions that satisfy apriori the deflection 

boundary conditions on the simply supported edges x = 0, x = a; and unknown functions ( )mY y  of 

the space coordinate of y which will be determined using variational calculus. The variation integral 

statement of the plate was then obtained using Galerkin’s procedure. The variational integral 

obtained was found to reduce to fourth order ordinary differential equations in ( ).mY y  This was 

solved, subject to the deflection boundary conditions of the clamped ends y = 0, y = b to obtain the 

algebraic eigen value – eigen vector problem which was solved to obtain the characteristic frequency 

equation. The roots yielded the natural (eigen) frequencies of the plate. The natural frequencies 

obtained were compared with natural frequencies obtained from the researchers in literature who 

used Galerkin-Vlasov, Levy, Finite Difference and Rayleigh methods. It was found that Kantorovich 

results agreed closely with the Galerkin-Vlasov and Levy methods, confirming the effectiveness of 

the method. 

 

Keywords: Kantorovich variational method, Kirchhoff-Love plate, coordinate (basis) function, 

algebraic eigen value, eigen vector problem, variational integral, Eigen frequencies. 
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1. INTRODUCTION 
 Plates are three dimensional structural 

elements characterized by length, width and a 

much smaller transverse dimension called the 

thickness. They are usually flat, and when 

curved, they are called shells (Timoshenko and 

Woinowsky-Krieger, 1959). They have 

extensive applications in civil, mechanical, 

aeronautical, marine, naval, structural and 

geotechnical engineering as bridge decks, 

retaining walls, aircraft panels, spacecraft 

panels, machine parts, etc. They can be made 

of reinforced concrete or metal and can be 

shaped as rectangular, circular, elliptical, 

skewed, and trapezoidal (Mansfield, 1964; 

Ugural, 1999). Plates are generally classified as 

thin plates 8 100,a
h

   moderately thick 

plates and thick plates  8 10a
h
   

depending on the ratio of a
h

 where h is the 

plate thickness and a is the least in plane 

dimension of the plates (Ventsel and 

Krauthammer, 2001). Plates can be subject to 

static or dynamic loads/forces; and can be 

subjected to inplane compression which causes 

buckling (Chakraverty, 2009; Nowacki, 1963). 

The focus of this paper is to study the natural 

frequencies of vibration of thin plates with two 

opposite edges clamped and the other two 

opposite edges on simple supports. There are 

several types of plate theories. The basic idea 

of plate theories is to reduce the three 

dimensional plate problem defined by the 

equations of the theory of elasticity to two 

dimensional approximations. This reduction of 

dimension is accomplished by integrating out 

one of the dimensions, usually the transverse 

dimension, z, by expressing stresses using 

resultant forces. The following plate theories 

exist: Kirchhoff-Love plate theory, Mindlin 

plate theory (Bletzinger Kai Ume, 2008), 

Reissner plate theory, Levinson (1980) plate 

theory, Reddy plate theory (Wang, et al, 2000), 

Von Karman plate theory (Large deflection 

plate theory), Refined plate theories (Shimpi, 

2002; Shimpi and Patel, 2006; Suetake, 2006, 

Lo et al, 1977, Szilard, 2004). 

 One of the steps in performing a dynamic 

analysis of plates is determining the natural 

frequencies and mode shapes of the plate. 

These characterize the basic dynamic 

behaviour of the plate and are an indication of 

how the plate would respond to dynamic 

loading. The natural frequencies of a plate are 

the frequencies at which the plate tends to 

vibrate if it is subjected to an excitation. Other 

commonly used terms for natural frequency are 

characteristic frequency, eigen frequency, 

fundamental frequency, resonant frequency, 

normal frequency and resonance frequency. 

The deformed shape of the plate at a specific 

natural frequency of vibration is termed the 

normal mode of vibration. Some other terms 

used for normal mode are mode shape, 

characteristic shape, and fundamental shape. 

Each mode shape is associated with a particular 

natural frequency (Yang et al, 2014; Navita, 

1979; Young, 1950; Bhardwaj et al, 2012; 

Khare and Mittal, 2015). Exact solutions of the 

free transverse vibration of rectangular 

Kirchhoff-Love plates have been found for just 

a few types of boundary conditions. For more 

difficult cases, approximate methods are used 

for calculating the natural frequencies and 

mode slopes (Reed, 1965). The exact methods 

used for dynamic analysis are the Navier 

double trigonometric series method which is 

suitable for plates with all edges simply 

supported and the Levy single trigonometric 

series method, which is suitable for rectangular 

plates with mixed support conditions. The 

approximate methods that have been 

commonly used include Finite Difference 

method, Finite Element method, Ritz 

variational method, Galerkin variational 

method (Balasubramanian, 2011) Collocation 

methods, Weighted Residual methods, and 

Integral transform methods (Tian et al, 1958). 

Xing and Liu (2009) used the method of 

separation of variables to solve for the exact 

solutions of free vibrations of thin orthotropic 

rectangular plates with all combinations of 
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simply supported and clamped edge boundary 

conditions. Phamová and Vampola (2016) 

determined free flexural vibration modes and 

eigen frequencies of a thin plate with general 

boundary conditions by transforming the 

governing partial differential equation into two 

ordinary differential equations that can be 

easier to solve. Bercin (1996) used the 

Kantorovich method to obtain the natural 

frequencies of vibration of clamped orthotropic 

plates. 

 Fallah and Khakbaz (2017) have 

successfully applied the extended Kantorovich 

method based on the first order shear 

deformation plate theory to solve the bending 

problem of functionally graded annular sector 

plates with arbitrary boundary conditions 

subjected to both uniformly distributed and 

non-uniformly distributed loads. They 

employed two approaches, using the functional 

of the problem, and the weighted integral form 

of the governing differential equations and 

solved the resulting ordinary differential 

equations. 

 

2. METHODOLOGY 
 In the Kantorovich method, the 

displacement field is described by the functions 

given as the products of assumed shape 

(coordinate) functions and of unknown 

functions, which then reduce the governing 

partial differential equation of equilibrium to 

ordinary differential equations in terms of the 

unknown functions (Lee, 2009). The assumed 

displacement coordinate functions must satisfy 

the boundary conditions at two parallel edges 

in one coordinate direction. The unknown 

functions are determined by enforcement of 

boundary conditions in the other two directions 

on the solutions to the resulting ordinary 

differential equation (Lee, 2009). The 

governing partial differential equation of 

Kirchhoff-Love plates undergoing vibration is 

4 ( , , ) ( , , ) ( , , )tt zD w x y t hw x y t p x y t         (1) 

where ( , , )w x y t  is the dynamic deflection,   

is the density of the plate, h is the plate 

thickness, pz is the external time dependent 

dynamic load, D is the plate rigidity. 

 For free harmonic vibrations, the 

displacement response ( , , )w x y t  would vary 

harmonically with time, such that 

( , , ) ( , )exp( ),mnw x y t W x y i t   and there will 

be no excitation force, where mn  is the 

natural frequencies of harmonic vibration. 

zp   0             (2) 

and the equation simplifies to 

 4 2( ( , ) ( , ) 0nti t
mnD W x y h W x y e


             (3) 

or 
2

4 0mnh
W W

D

 
             (4) 

Following Kantorovich-Galerkin’s variational 

method (Kantorovich and Krylov, 1958) 

1

( , ) ( )sinm

m

m x
W x y Y y

a






            (5) 

for plates simply supported on edges x = 0, x = a 

The variational integral statement becomes the 

double integral over the plate domain given by: 

2
4

1 10 0

'
( )sin ( )sin sin 0

b a
mn

m m

m m

hm x m x m x
Y y Y y dxdy

a D a a

 

 

      
     

   
 

 (6) 

The variational integral is solved to obtain 

( )mY y . 

 

3. KANTOROVICH METHOD FOR 

THE NATURAL FREQUENCIES OF 

VIBRATION OF THIN RECTANGULAR 

PLATES WITH TWO OPPOSITE EDGES 

CLAMPED AND THE OTHER TWO 

OPPOSITE EDGES SIMPLY 

SUPPORTED 
 The thin rectangular plate considered is 

shown in Figure 1. The plate has two opposite 

edges (y = 0, and y = b) clamped and the other 

edges x = 0, x = a simply supported
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Figure 1: Thin rectangular plate with opposite edges clamped and the other edges simply supported 

 

 

The governing partial differential equation for 

Kirchhoff-Love plates subjected to dynamic 

loads is given by Equation (1). 

For free vibrations, there is no externally 

applied excitation, ( , , ) 0p x y t   and the 

governing equation simplifies to  
4 0ttD w hw                  (7) 

The plate is clamped at y = 0, y = b and simply 

supported at x = 0, x = a. The deflection and 

force boundary conditions are: 

( 0, , ) 0; ( , , ) 0

, ( 0, , ) 0; , ( , , ) 0

( , 0, ) 0; ( , , ) 0

, ( , 0, ) 0 , ( , , ) 0

xx xx

y y

w x y t w x a y t

w x y t w x a y t

w x y t w x y b t

w x y t w x y b t

   

   

   

   

     (8) 

where ,yw  represents the derivative of ( , )w x y  

with respect to y. 

For harmonic vibrations, we assume 

( , , ) ( , ) i tw x y t W x y e                          (9) 

where mn  is the frequency, then from 

Equation (50), the variational integral 

becomes: 

 4 2

0 0

( , ) ( , ) sin 0

a b
i t i t m x

D W x y e h W x y e dxdy
a

  
     

   (10) 

2
4

1 1

( )sin ( )sin sin 0i t
m m

m m

m x h m x m x
Y y Y y e dxdy

a D a a

 


 

         
       
    

 
   (11) 

 4 4

1 0 0

( )sin sin 0

a b

m

m

m x m x
Y y dxdy

a a





  
    

 
 

      (12) 

4 2

1

sin ( ) 2 sin ( )m m

m

m m x m m x
Y y Y y

a a a a





       
   

   
 

 

4sin ( ) sin ( ) sin exp 0iv
m m

m x m x m x
Y y Y y dxdy i t

a a a

  
    



   (13) 

2 4
4

1 0 0

( ) 2 ( )

a b
iv

m m m

m

m m
Y y Y Y y

a a





      
                

 
 

sin sin 0
m x m x

dxdy
a a

 
                        (14) 

Considering the orthogonal property of the 

function sin ,
m x

a


 we have 

0

0 if 

sin sin
 if 

2

a m m
m x m x

dx a
a a m m


  

 





          (15) 

2 4
4

1 0

( ) 2 ( ) ( ) 0

b
iv

m m m

m

m m
Y y Y y Y y dy

a a





      
                 

 
        (16) 

The characteristic equation becomes the fourth 

order ordinary differential equation in ( )mY y   
2 4 4

4

4
( ) 2 ( ) ( ) 0iv

m m m

m m
Y y Y y Y y

a a

   
           

         (17) 

We solve for ( )mY y  using the method of trial 

functions. Let us assume a solution for ( )mY y  

in the form 

( ) exp( )mY y A s y                                    (18) 

where A is a constant (parameter) we wish to 

find. 

Then by substitution into the characteristic 

equation, we obtain: 

 
2 2 4 4

4 2 4

2 4
2 0sym m

s s Ae
a a

     
            

    

           (19) 

For non trivial solutions, 

 

( ) 0sy
mY y Ae                                    (20) 

Hence, 
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2 2 4 4
4 2 4

2 4
2 0

m m
s s

a a

    
          

   

                      (21) 

2
2 2

2 4

2
0

m
s

a

 
     

 

                      (22) 

2 2 2 2
2 2 2 2

2 2
0

m m
s s

a a

   
          

  

          (23) 

Thus, 
2 2

2 2

2

m
s

a

 
    
 

                       (24) 

or 
2 2

2 2

2

m
s

a

 
    
 

                                  (25) 

2 2
2 2

2
( 1)

m
s

a

 
     

 

                      (26) 

2 2
2

1,2 2

m
s

a

 
       

 
                       (27) 

2 2
2

2,3 2

m
s i

a

 
       

 

            (28) 

The solution for ( )mY y  then becomes: 

1 2 3 4( ) cosh sinh cos sinm m m m mY y c y c y c y c y           (29) 

Using Equation (5), the deflection becomes: 

 1 2 3 4

1

( , ) cosh sinh cos sin sinm m m m

m

m x
W x y c y c y c y c y

a






       

   (30) 

W(x, y) is required to satisfy the boundary 

conditions 

( , 0) 0, ( , ) 0w x y w x y b               (31) 

, ( , 0) 0, , ( , ) 0y yw x y w x y b          (32) 

where the comma, after w denotes partial 

derivative with respect to y. 

 1 2 3 4

1

sinh cosh sin cos sinm m m m

m

w m x
c y c y c y c y

y a





 
         




   (33) 

1 3( , 0) 0m mw x y c c                           (34) 

1 2 3 4( , ) cosh sinh cos sin 0m m m mw x y b c b c b c b c b          (35) 

2 4( , 0) 0m m

w
x y c c

y


     


          (36) 

1 2 3 4( , ) sinh cosh sin cos 0m m m m

w
x y b c b c b c b c b

y


             



(37) 

In the matrix form, Equations (34-37) become 

the system of homogeneous equations: 
1

2

3

4

1 0 1 0 0

0 0 0

cosh sinh cos sin 0

sinh cosh sin cos 0

m

m

m

m

c

c

cb b b b

cb b b b

 


   

       

   (38) 

This is now a homogeneous equation. For non 

trivial solutions, the determinant of the 

coefficient matrix is equated to zero, to obtain 

the characteristic equation: 
1 0 1 0

0 0
0

cosh sinh cos sin

sinh cosh sin cos

b b b b

b b b b

 


   

       

  (39) 

Expanding the determinant, we have, 

0 0

sinh cos sin cosh sinh sin 0

cosh sinh cos sinh cosh cos

b b b b b b

b b b b b b

   

       

           

  (40) 

Expanding, we obtain after simplification, 
2 22 (1 cosh cos ) ( )sinh sin 0b b b b            (41) 

or 2 22 (cosh cos 1) ( )sinh sin 0b b b b             (42) 

This is the characteristic frequency equation in 

  and . It is a transcendental equation, which 

is solved to find    and .  

Solving, for m = 1, n = 1 

2

2

38.8156

a
              (43) 

6.2302

a
                (44) 

2

2

19.0764

a
               (45) 

4.36765

a
                (46) 

For m = 2, n = 1 

2

2

64.6126

a
              (47) 

8.0382

a
                (48) 

2

2

44.8734

a
               (49) 

6.69876

a
                (50) 

For m = 1, n = 2 

2

2

79.1966

a
              (51) 

8.89925

a
                (52) 

2

2

59.4574

a
               (53) 
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7.71086

a
                (54) 

So, for m = 1, n = 1, 

2
11 2

28.946

a
               (55) 

11

5.38015

a
               (56) 

2
mn

mn

h

D

 
               (57) 

 
4 2

4 11
11

5.38015 h

a D

  
   

 

             (58) 

 
4

2
11

5.38015D

h a

 
   

  

             (59) 

 

11 2

28.946 D

ha
 


             (60) 

 

Similarly, 2
mn mn

D

h
  


          (61) 

 

21 2

54.743 D

ha
 


             (62) 

 

12 2

69.327 D

ha
 


             (63) 

 

22 2

97 D

ha
 


             (64) 

 

4. RESULTS, DISCUSSIONS AND 

CONCLUSIONS 
In this paper, the Kantorovich variational 

method has been successfully applied to 

determine the natural frequencies of vibration 

of Kirchhoff-Love plates with two opposite 

edges (y = 0, y = b) clamped, and the other two 

edges (x = 0, x = a) simply supported. The 

plate was assumed to be made of 

homogeneous, isotropic material. The 

Kirchhoff-Love differential equation for plate 

flexure under free vibration loading conditions 

was written in variational form, based on the 

Kantorovich method. Hence, the deflection 

basis function was assumed to be a linear 

combination of m coordinate basis functions in 

the x-direction that satisfy apriori the 

deformation boundary conditions on the edges 

x = 0 and x = a; and m unknown functions 

( )mY y  of y in the y-direction. The variational 

integral formulated based on Kantorovich 

methodology was obtained as Equation (11). 

The Kantorovich variational equation was 

further simplified to yield Equation (16) and 

subsequently, the fourth order ordinary 

differential Equation (17). This was solved 

using the method of trial functions (also called 

the method of undetermined parameters) to 

obtain the general solution for ( )mY y  presented 

in Equation (29). Thus, the general solution for 

the deflection modal shape function was 

obtained as Equation (30). The boundary 

conditions on y = 0, y = b were enforced on 

( )mY y  to obtain the system of homogeneous 

equations given as Equation (38) in terms of 

the four constants of integration. For non trivial 

solutions, the homogeneous equation yielded 

the characteristic frequency equation shown in 

Equation (39). Expansion and simplification of 

the characteristic frequency equation yielded 

Equations (41) and (42), which are 

transcendental equations in terms of   and .  

The transcendental equation was solved to find 

the roots ,  and   for various integral values 

of m, and n. Since   and   were defined in 

terms of the natural frequencies of the plate, 

the natural frequencies were thus obtained. The 

natural frequencies obtained are tabulated in 

Table 1, which also shows the natural 

frequencies of Kirchhoff-Love plates with the 

same edge support conditions obtained by 

other researchers. A comparison of the natural 

frequencies obtained shows that the 

Kantorovich method yielded natural 

frequencies which were identical with the 

natural frequencies obtained using the 

Galerkin-Vlasov method and the Levy Method. 

The Kantorovich variational method is thus an 

effective and efficient method for the free 

vibration analysis of eigen frequencies of 
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Kirchhoff-Love plates with two opposite edges 

clamped and the other two edges simply 

supported. 

Table 1: Natural frequencies of free vibrations of square flat plate clamped on two opposite edges 

and simply supported on the other two 
2

2
mn

mm

D

ha


 


  

Eigen values 
2
11  

2
12  

2
13  

2
21  

2
22  

Kantorovich

-Galerkin 

(Present 

study) 

28.946 69.327  54.743 97 

Galerkin-

Vlasov 
28.944 70.11 123.16 54.93 97.07 

Levy 

method 
28.946 69.32 129.086 54.743 94.584 

Finite 

Difference 

method 

28.974     

Rayleigh 

method 
29.57     
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